Assessing data analysis and programming

Hadley Wickham, Garrett Grolemund
September 15, 2011

Abstract

Modern data analysis is impossible to do with programming, and so we must teach programming as part
of the statistics curriculum. Both data analysis and programming demand different approaches to teaching
than the usual mathematical statistics course. This paper outlines techniques that we have found successful,
focussing particularly on the challenging issue of assessing student performance.

1 Introduction

Data analysis, the craft of turning data into knowledge, insight and understanding, is a critical skill for statis-
tics graduates. It weaves together the mathematical and computational threads that span the curriculum and
provides practical tools for working with data. Modern data analysis demands the use of a computer: pencil
and paper are no longer adequate for the quantity of data we must deal with. Despite these facts, classes
that teach both data analysis and programming are rare (Nolan and Temple Lang), |2010). The aim of this
paper is to help make them more common by focussing on a challenge faced when teaching data analysis
and programming: how do you effectively assess student performance?

This paper has been shaped by our experience teaching Stat405, a data analysis class at Rice University,
http://had.co.nz/stat480). Stat405 grew out of an earlier course taught at Iowa State, and combined,
we have taught it eight times in the last six years. The primary focus of the class is data analysis, but because
data analysis is impossible without the right tools, a secondary focus is programming. Programming is often
a dirty word in statistics, but mastery of the basics is just as important as mastery of the mathematical
underpinnings of statistical theory. That said, while the course uses computational tools extensively, it is not
computational: it focusses on using the tools to do data analysis, not on learning about computation. A brief
overview of the topics currently covered in class is provided in Appendix [Al

While there’s no argument that modern data analysis must be performed on a computer, there is a choice
between learning a graphical user interface (GUI) or a programming language. We believe that learning how
to program is a vital skill for every analyst who will be working intensely with data. While convenient, a
GUI is ultimately limiting and hampers three properties essential for good data analysis: reproducibility,
the ability to exactly recreate a past analysis, which is crucial for good science; automation, the ability to
rapidly re-create an analysis when data changes; and communication: code is just text, so it is easy to put
in an email and ask for help, or print out and have graded.

Compared to math-centric classes, data analysis and programming require rather different means of
assessment. Data analysis is a high level skill, and there is typically no right answer (although there are
better and worse answers). Section 2| discusses these challenges and outlines our current approach, which
includes a transition from small individual analyses to large team projects, and grading on dispositions, not
just knowledge or skills. Grading programming seems deceptively easy: you just check that the results are
correct. But incorrect results give the student no insight into what needs to be improved, so it is better to
also assess the process. Section 3] we will argue that code is a medium of communication and should be

http://had.co.nz/stat480

graded as such. Our approach to grading code draws more from composition than from statistics, grading a
program like you might grade a paper.

2 Data analysis

Data analysis is a high-order, creative skill. It requires the mastery of tried and true techniques as well as
the ability to create new variations to address the problem at hand. Data analysis is a craft, a combination
of science and art, and can not be taught with the same techniques we use for more mathematical topics.
One particular challenge with teaching and assessing data analysis is the lack of a formal model. While
many have proposed models based on personal experience (Cox, |[2007; [Tukey and Wilk, |1966}; Huber, (2011}
Chatfield, 1995; Box, [1976; Wild and Pfannkuch, |1999), there has been little work developing and validating
a comprehensive model. Others have claimed that data analysis can have no systematic exposition, and can
only be taught through apprenticeship (Huber, 2011)). While apprenticeship is generally a excellent way to
learn any field, it does not help the problem we face: scaling up to meet the increasing demand for skilled
analysts.

The missing framework for data analysis makes teaching challenging because we have no infrastructure
to guide students and to suggest metrics for grading. In the absence of a solid foundation, we fall back on
an apprenticeship-inspired approach, giving the students many opportunities to practice data analysis and
receive detailed feedback on their work. This is a lot of work, but doable for a small class.

Overall assessment is divided into weekly homeworks and three larger team projects. Each project and
the first four homeworks focus on data analysis. The homeworks provide scaffolding for students apply their
new skills to a small, relatively well defined problem, and to receive rapid feedback. The homeworks are
open-ended (find x interesting plots of dataset y), and the grading focus is on providing copious feedback.
This helps students learn our expectations for a good data analysis. Early homeworks can be frustrating for
students because they have so many questions to ask, but don’t yet have the skills to answer them. This
helps motivate the rest of the course: students are gradually empowered to answer the more sophisticated
questions they’ve been thinking about the whole time.

To challenge students in an environment similar to the working conditions of practicing statisticians,
the three team projects allow students to tackle larger problems. These are still open-ended but require
considerably more work, as students need to write a 10-15 page report and integrate work across team
members to provide a consistent narrative arc. The team projects have been successful mainly because we
have followed the excellent guidelines of |Oakley et al.| (2004)): assign teams to ensure diversity, teach tools
for dealing with team conflict, and adjust individual grades based on team citizenship.

The first project uses data already seen in class and in homeworks, and class time is used to discuss
team work and provide feedback on early drafts. The second project increases the challenge by providing a
new dataset and no in-class scaffolding. Students need to independently generate interesting questions and
answer them on their own. The final project increases the challenge still further by requiring students to
select their own data set. This also gives students an opportunity to practice their data cleaning skills and
gain some experience with the challenges of finding good data.

All three projects result in written reports (produced in latex) that describe the data, analysis and results.
The final project is also presented at a poster session. Class time is used to teach both report writing and
poster presentation since communication is such an important skill for apprentice statisticians to learn. The
poster session has also been successful at raising the profile of the class within the university, and it’s a fun
opportunity for the students to dress up and talk about their work.

As data analysis assessment shifts from homeworks to projects and the amount of project scaffolding
decreases, the focus of lecture materials and weekly homeworks also shifts. The first few weeks of class are
tightly choreographed to give students the absolute essentials of visualisation and manipulation in the least
amount of time. Many in-class examples show how to string new techniques together to uncover interesting

facts about the data. Later classes focus more on abstract technical skills such as function writing, and the
students are left to figure out how to best apply them. This approach develops student autonomy as the
semester unfolds. Students mature from imitating what they see in lecture at the beginning of the semester
to guiding themselves through every step of the data analysis process by the end of the semester. Accordingly,
later homeworks focus on technical skills, helping students to master the programming techniques they need
to tackle more interesting questions in the projects. This shift also tends to make later homeworks less time
consuming, because they are more concrete, which balances the increased time commitments of the projects.

Data analysis homeworks and projects are graded using a rubric of three components: curiosity, scepti-
cism and organisation. These reflect three key dispositions of a statistician (Wild and Pfannkuch,1999): they
should be curious about data and able to creatively apply old tools in new ways; they should be sceptical
about their findings, always aware that a result may be the result of chance alone and always on the look
out for a way to double check their work; and they should be able to present their findings in an organised
manner that guides the audience from raw data to results. A copy of the complete rubric is available in
Appendix[C| as well as a selection of anonymous graded homeworks (published with student permission).

An interesting side affect of this rubric is that because the same rubric is used throughout the semester,
early assignments tend to receive very low grades (many 2s and 3s out of 5). Copious reassurance is given
in class to ensure that students realise that this won’t negatively effect their final grade, but it does seem to
provide considerable incentive for Rice students to invest time in the homework.

3 Programming

When assessing programming it is easy to focus on what’s easy to assess: results. With some investment it’s
possible to automate grading, even automatically providing helpful comments if the answer is close (Murrell,
2008). There are two problems with this approach: if the code is incorrect the student gains no insight into
possible causes, and it encourages a mindset focussed on what works right now, instead of what works now
and in the future.

The approach that we use, and recommend, is to centre assessment around the idea of computer code
as an artefact of communication. Code communicates not only to the computer, but also to collaborators
and even the original author six months after they have written the code. Clarity of communication is
so important because good code does more than just return the correct answers. Good code continues to
provide the right answers even as requirements change; clearly conveyed intent makes it much easier to
adapt code to future needs.

We assess code on three criteria: planning, execution and clarity. Planning grades evidence of thought
before writing the code. Is there a clear strategy, described by an introductory comment? Does the break-
down of the large problem into smaller pieces make the solution simpler? Execution grades mastery of R
vocabulary and use of functions: ideally the code should be concise and free of duplication. Clarity grades
how easy it is to read and understand the code. Do function names suggest their purpose? Are comments
well-integrated and do they explain the why, not the how? One reference that we have found helpful for
developing the rubric is Kernighan and Plauger| (1978): while some advice is dated, the majority is timeless
advice on how to write clear, elegant code.

Coupled with these high level objectives are penalties for poor style. Students need to learn the stylis-
tic conventions for writing code, just as they learn punctuation conventions for writing prose. Style is
someways simultaneously both trivial and crucial: it is unrelated to the quality of the underlying ideas, but-
properuseofconventionsmakesideasmucheasiertounderstand! Points are deducted for mistakes like incorrect
spacing/indenting, overly long lines or confusingly named functions or variables. This makes the code much
easier to read (and thus grade) and helps to establish a common style among students, which also facilitates
collaboration. A copy of the complete rubric is included in Appendix|[C|

A side benefit of the struggle to teach good programming is that our own code has become significantly

easier to understand. This inspired me to try another technique which has proved useful: provide students
with (anonymised) code that other students have turned it, and ask them to explain how each function
works, and then pick which one they find easiest to understand. This forces students to reflect on their code
and hopefully think about how they can do better. One such homework is included in Appendix ??.

As well as assessing high-level programming skills, some homeworks focus on lower-level skills. A cer-
tainly fluency in basic skills (data manipulation, writing functions, identifying errors) is necessary before
they can be fluidly combined to solve bigger problems. To practice these skills we assign programming drills,
made up of many simple problems. Each problem only requires a few minutes of thought, and stringing
many together helps practice common techniques so that they can be quickly retrieved from memory. These
drills are graded based on correctness with the assumption that most students will achieve grades of 90%+.

4 Conclusion

Teaching data analysis and programming is important, but hard, particularly when it comes to providing
useful assessments. This paper has outlined some of the techniques that we have found to be most useful,
and hopefully will encourage others to teach these important areas. Struggling to teach data analysis has
also made us aware of how little literature there is on the topic, and we have made research in this area a
priority.

A class that teaches data analysis and programming, if designed carefully, does not require extensive pre-
requisites (either statistical or computational). It provides an interesting introduction to statistics but it still
forces students to struggle with some of the most important statistical and computational thinking. At Rice,
the class has proven to be extremely popular, growing from 8 students per year to 60 students per semester
in a little over three years. It has also contributed to the considerable growth of the statistics major.

References

George E. P. Box. Science and statistics. Journal of the American Statistical Association, 71(356):791-799,
1976. ISSN 01621459. doi: 10.2307/2286841. URL http://dx.doi.org/10.2307/2286841.

W. John Braun. An illustration of bootstrapping using video lottery terminal data. Journal of Statistics
Education, 3(2), 1995. URL http://www.amstat.org/publications/jse/v3n2/datasets.braun.html.

Christopher Chatfield. Problem Solving : A Statistician’s Guide. Chapman & Hall, 1995.

D. R. Cox. Applied statistics: A review. Annals of Applied Statistics, 1(1):1-16, 2007. URL
http://projecteuclid.org/DPubS?verb=Display&version=1.08&service=UI&handle=
euclid.aoas/1183143726& page=record.

Garrett Grolemund and Hadley Wickham. Dates and times made easy with lubridate. Journal of Statistical
Software, 40(3):1-25, 2011. URL http://www.jstatsoft.org/v40/103/.

Peter Huber. Data Analysis What Can Be Learned from the Past 50 Years. John Wiley Sons, Inc., Hoboken,
New Jersey, 2011.

Brian W Kernighan and P J Plauger. The Elements of Programming Style. Computing Mcgraw-Hill, 1978.

Paul Murrell. Comparing non-identical objects. R News, 8(2):40-47, October 2008. URL http://CRAN.
R-project.org/doc/Rnews/.

D. Nolan and D. Temple Lang. Computing in the statistics curricula. The American Statistician, 64(2):97-107,
2010.

http://dx.doi.org/10.2307/2286841
http://www.amstat.org/publications/jse/v3n2/datasets.braun.html
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1183143726&page=record
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.aoas/1183143726&page=record
http://www.jstatsoft.org/v40/i03/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Barbara Oakley, Richard M Felder, Rebecca Brent, and Imad FElhajj. Turning student groups into effective
teams. Journal of Student Centered Learning, 2(1):9-34, 2004. URL http://www4.ncsu.edu/unity/
lockers/users/f/felder/public/Papers/Oakley-paper (JSCL) .pdf.

J. W. Tukey and M. B. Wilk. Data analysis and statistics: an expository overview. In AFIPS ’66 (Fall):
Proceedings of the November 7-10, 1966, Fall Joint Computer Conference, pages 695-709, New York, NY,
USA, 1966. ACM. doi: http://doi.acm.org/10.1145/1464291.1464366.

Hadley Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1-20,
2007. URL http://www. jstatsoft.org/v21/i12/paper.

Hadley Wickham. stringr: modern, consistent string processing. R Journal, 2(2):38-40, 2010a. URL http:
//github.com/hadley/stringr.

Hadley Wickham. A layered grammar of graphics. Journal of Computational and Graphical Statistics, 19(1):
3-28, 2010b.

Hadley Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):
1-29, 2011. URL http://www. jstatsoft.org/v40/i01/.

CJ Wild and M. Pfannkuch. Statistical thinking in empirical enquiry. International Statistical Review, 67(3):
223-248, 1999.

A Syllabus

The syllabus is organised around the three main themes: visualisation, data manipulation, and programming.
The course is arranged into eight modules each made up of three lectures and focussed on one theme. Each
theme is covered multiple times, so each repetition can go into more depth and teach deeper skills. The first
repetition gives them the essential skills for their first data analysis project, and provides the foundations for
future repetitions: we first make them proficient, then effective, then sophisticated.

Each module is described in more depth below. Only two modules are focussed on visualisation, because
it is used so extensively in all lectures.

e Introduction to ggplot2: The basics graphical tools of statistics: scatterplots, bar charts and his-
tograms. How to add additional variables to a plot using aesthetics (like colour, shape or size) and
conditioning. Techniques that make it easier to compare 1d distributions (frequency polygons), and to
deal with overplotting on scatterplots (boxplots, smoothers, 2d binning).

Focus: visualisation. Data: diamond prices.

e Data frames: subsetting (numeric, logical, character), data input and output, .csv vs. .rdata, missing
values.

Focus: data manipulation. Data: EPA fuel economy 1973-2009.

e Writing functions: basic strategy for functions (solve for specific case and then generalise) and basic
components of a function (arguments, body, return value), control flow (if/if else/else, for loops).
Focus: programming. Data: slot machine returns (Braun, |[1995).

e Data manipulation: joining multiple data sets, reordering data frames, group-wise aggregation and
transformation, the split-apply-combine strategy (Wickham), 2011).

Focus: data manipulation. Data: top 1000 US baby names 1890-2008.

http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/Oakley-paper(JSCL).pdf
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Papers/Oakley-paper(JSCL).pdf
http://www.jstatsoft.org/v21/i12/paper
http://github.com/hadley/stringr
http://github.com/hadley/stringr
http://www.jstatsoft.org/v40/i01/

e ggplot2 theory: framework for critiquing graphics, layered grammar of graphics (Wickham, 2010b),
scales and themes for tweaking graphics for communication rather than exploration.

Focus: visualisation. Data: US airways on time arrivals.

e Special data: working dates (Grolemund and Wickham),|2011), strings (Wickham),2010a), and regular
expressions. Particularly focus on the different between a string and it’s representation in R (why a
regular expression to replace a single backslash is \\\\).

Focus: programming. Data: emails.

e Data cleaning: the basic data structures, when to use each, the the 4 Cs of clean data, the difference
between molten, long and wide data, and changing between them (Wickham) [2007).

Focus: data manipulation. Data: billboard top 100 songs 1957-2008.

e Advanced programming: debugging, optimisation, vectorisation, and why floating point math is not
the same as pure math.

Focus: programming.

An additional module covers professional development, including team work, report writing, and poster
presentations, and is spread over the entire semester.

B Code review

For homework, students are asked to read the following three functions which compute the prize awarded
when given the windows displayed by a slot machine. After reading the code, they write one page summary
describing the basics of how each function works, which one they liked best, and what they learned about
writing clear code.

prizel <- function(slots) {

if (!'is.character(slots) || length(slots) != 3) {
stop("Slots should be a character vector of length 3.")

}

same <- unique(slots)

if (length(same) == 1) { # All the same
prizes <- c("DD" = 800, "7" = 80, "BBB" = 40, "BB" = 25, "B" = 10, "C" = 10, "0" = 0)
return(unname (prizes[same]))

}
ds <- sum(slots == "DD")

if (length(same) == 2 & ds > 0) { # All the same with wilds
same = setdiff(same, ’DD’)
prizes <- c("DD" = 800, "7" = 80, "BBB" = 40, "BB" = 25, "B" = 10, "C" = 10, "0" = 0)
return(2”ds * unname(prizes[same]))

}

if (all(same %in% c("B", "BB", "BBB","DD"))) return(2”ds * 5) # All bars

cs <- sum(slots == "C")
if(cs > 0){
if(cs == 1){
if(ds == 0) return(2) # 1 carat, no diamonds
if(ds == 1) return(10)
}
if(cs == 2){
return(5)
}
}
return(0)

}

prize2 <- function(slots) {
if (!is.character(slots) || length(slots) != 3) {
stop("slots should be a character vector of length 3")
}
same <- unique(slots)
a <- c("7" = 80, "BBB" = 40, "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

ndd <- sum(slots == "DD") # number of diamonds
nb <- sum(slots %in% c("B", "BB", "BBB")) # number of bars
nc <- sum(slots == "C") # number of cherries

if (ndd == 3) {
Three diamonds
800
} else if (ndd == 2) {
Two diamonds
prizes <- a * 4
unname (prizes[slots[slots != "DD"]1])
} else if (ndd == 1) {
One diamond
if (length(same) == 2) {
One diamond with the other same windows
prizes <- a * 2

unname (prizes [same[same != "DD"]])
} else if (nb == [l nc == 1) {
One diamond with two different bars or with one cherry and one zero
10
} else {
0

}
} else if (length(same) == 1) {
All the same
prizes <- a
unname (prizes [same])

} else if (nb == 3) {
All bars
5
} else {
Cherries
c(0, 2, 5)[nc + 1]
}

find the prize of a given window combination
prize3 <- function(slots) {
if (!is.character(slots) || length(slots) != 3) {
stop("slots should be a character vector of length 3")
X

same <- unique(slots)

if (length(same) == 1) {
All the same
prizes <- C("DDII = 800, "7" = 80, "BBBI’ = 40’ "BBII = 25’ "Bll = 10’
"Ch = 10, "0" = 0)
unname (prizes [same])

} else if ((length(same) == 2) & ("DD" %in’ slots) & (same[1] != "DD")) {
All the same with one or two DD’s, the first entry in same is not DD
ds <- sum(slots == "DD")

prizes2 <- c("7" = 80, "BBB" = 40, "BB" = 25, "B" = 10, "C" = 10, "O0" = 0)
unname (prizes2[same[1]]) * c(1, 2, 4)[ds + 1]

} else if ((length(same) == 2) & ("DD" %in’ slots) & (same[1] == "DD")) {
All the same with one or two DD’s, the first entry in same is not DD
ds <- sum(slots == "DD")

prizes2 <- c("7" = 80, "BBB" = 40, "BB" = 25, "B" = 10, "C" = 10, "O" = 0)
unname (prizes2[same[2]]) * c(1, 2, 4)[ds + 1]

} else if (all(same %in% c("B", "BB", "BBB", "DD"))) {
All bars
ds <- sum(slots == "DD")
5 % c(1, 2, 4)[ds + 1]

} else if ("C" %in% slots) {
Diamonds and cherries
cs <- sum(slots == "C")
ds <- sum(slots == "DD")

c(0, 2, 5)[cs +ds + 1] * c(1, 2, 4)[ds + 1]

} else {

The function takes an inputed string from slot machine data
and outputs the expected prize. Diamonds are wild and

the presence of diamonds double the total prize per diamond.
Prizes determined by 3 of the same, all bars, or cherries.
prized4 <- function(windows) {

payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
"BB" = 25’ ngn = 10’ non = 10’ non = 0)

same <- length(unique(windows)) ==

diamond_wild <- length(unique(windows)) == 2 &
any (windows %inJ% "DD")

allbars <- all(windows %in% c("B", "BB", "BBB", "DD"))
diamonds <- sum(windows == "DD")

Determining Prizes-----————-—-----"""""""""""""—"—————————————————
if (diamonds == 3){
800
} else if (same | diamond_wild) {
payoffs[windows[! (windows %inj "DD")][1]] *
c(1, 2, 4)[diamonds + 1]
} else if (allbars) {
5 % c(1, 2, 4)[diamonds + 1]
} else {
cherries <- sum(windows == "C") + sum(windows == "DD") x*
as.numeric(any(windows %in7 "C"))

c(0, 2, 5)[cherries + 1] *
c(1, 2, 4)[diamonds + 1]

C Rubrics

The following two pages include our rubrics for grading data analysis homeworks and code.

"UoISN|oUOD
Jo Arewwins ou s| aJay |
"1X9} 98U} Ul paouaIsjel

ale Aayy aisym wouy Aeme
Je} aJe saunby ‘sbuipeay
ou aJe asay] ‘leded

JNOA peal 01 piey S| }

"awl} Ixau
Jayaq op 0} moy jnoge
1ybnoyy 10U 8ABY NOA

‘uofyeoynsnl noyum o160j
Jo sdes ‘Ajjeonuoun
paideooe sBulpul

SSB|O Ul passnosIp
M 9s0U} UO pal|ai

1ng ‘elep ay} jo suonsenb
UMO JNoA yum dn awoo
JoU dABY NOA °uoljelo|dxd
JO 92U8pIAS OU SI 819y}
pue ‘ajdwis aJe suoisanp)

aABY BWOS ‘suolisanb
poddns 03 ussoyo Ajood

8UO WoJ) Moy} 0} }dwene
OU PUE JESjoUN SUO08S ‘pasiueblo |jom Ajleisusn

-}|8S ‘uonsanb inoyum
pa1daooe sbuipuly swos

pau} noA 1eyy 1sebbns

0} 90UBPIAG OU SI 8Jay |
‘poyse sem jey} wnuwiuiw
aJeq 8y} suop aABY NOA

‘010 oljed
109dse usasoyo Alood
‘saoe|d [ewlosp Auew

00} - pajussalid Aood
aJe awos inq ‘ejeudoidde
solydeub Jo ss|qe |

S'MBJ} [BJUBLIEPUNY

s9|ge} pue solydetn
‘IXeu a8y} 01 o1do} ‘pa|ppnw
SUO[}09S SWOS INq

*aininy oy}
Ul Jejleq op 01 Moy (noge
1ybnoys aney noA 1sebbns

0] 90UBPINS BJ3I| pue
WwiS|o1I0-418s 8| sl aisy L

“Jayye synsal
JNOA 3o8yo 03 shem Auew
yum dn swod j,usney noA
1nq ‘sBuipuly paydesoe
pspul|q },usAey NOA

“eam WSIoNLIO

*UOISN|OUOD [eul} JNOA

0} Buiwoo aJ10jaq (s|jepow

Jo ‘sojydeub ‘sa|gey)
seyoeoidde s|diynwi ‘yoJeasal [euonippe
ou Jo /I ‘seap! Auew
JO 189Q 8y} pe1os|as aney
noA ey} eouspine ol
1ng ‘uoljeio|dxs swosg

uasoyo ||om pue
Jes|o solydeub pue ss|qe|

‘asodind Jes|o

sey uoloes yoeg "Bupoe)
S| MOJ} Inq ‘pojesedss
Al/es|o suonoes pue
pasiueblo |[am sBuipuly

‘uolnysanb awes

8y} Jamsue 03 sanbiuyos}
a|dijnw jo asn swos

pue ‘sisAjeue [eo[}140 awos
st aiay] Ajjusisisuod

Jou Ing ‘[eoNUO-|es

pue |eo11daos aJe NOA

‘paule|dxa

pue pajuasalid AjpAaljealo
aJe seap| JNOA JO swos
pue ‘sBuipuly urejdxa
sd|ay youeasal [euonippe
awog "uonebiseul

pue uoijelo|dxa Jo Ajus|d

‘asodind paJisap Jo}
paoe|d pue pauny Ajjnjesed solydelb pue ss|ge|

‘aJow a1ebsanul 0} sAem pue suonsanb Jayuny
juesaid pus ay} Je suolsnjouo) sbBuipuly

pue yoeoudde unoA sesuewwns Ajjeuq Jjeded
3y} JO MBIS Y} Je Arewwins Jo 1oelisge uy

‘ueods 0}

Ases s| Jaded ay] "1Xau 8y} O} UOI}08S BUO WO}
MOJ} JUS|[99XT ‘SUOI109s d)eledas ajeolewsap
sbBuipeay Jes|) ‘pasiuebio |[am Aiaa sbuipui

‘way} Bunsal Jo skem mau Buipsaiaiul yum dn
WO puUB SUOII0U PaAIeouoodaid abus|eyd Ing
‘wopsim paleatad 1deooe Ajpullq 1,uop NOA

palpawal g p|nod Ayl moy

0} se suonsabbns apinoid pue ABojopoyiaw ul
sme)} AHIUBPI NOA ¢8WI} 1X8U Jaliaq op | p|nod
MOH ¢passiul | 8aey 1eym ¢Aiood op | pip
TeyM éliem op | PIP 1eYAA [[eD11I0-4|8S 8Je NOA

‘Buoum ase noA yeyy Ayjiqissod

3y} 4o} pamojle aAey Inqg ‘e|qisne|d 1sow sy}
SB OM} JO auo juasaid noA synsai Buisudins
aJojdxa 0} s|o0} a|di}Inw asn pue ‘Buipuly
uanlb e Joy suoneue|dxa ajdiynw 3sebbns NoA

OAlBad S| Uoljeluasaid pue uoljeue|dxa JNOA

sBuipuly urejdxa/puelsispun djsy
0} PasN $924N0S JaY10 WO} YdJeasal [euolyppe
‘payse sem jeym puoAaq auob aney NoA

“Jamsue

[eul} JnoA 03 Buiwod ai0yeq sAem jualayip Auew
Ul BIEP 9y} Je pa3 00| ABY NOA "SaJn|ie} pue
s|el} Auew JO 80USpIAS pue uoI1BIO|dXd asusiu|

uonesiuebiQ

wisiondeos

Aysound

L

4 €

14

S

(4) eyenbapeu|

(D) Y4om spesN

(9) e|qe1deooy

(v) poon

(+v) Buipueisino

‘Aym BapI ou
OABY | ‘SHIOM U }|
"9p09 puelsiopuUN

‘Buipuelsiopun

pie Aj[eiausb

10U Op SjUBWIWOD
pue SaWeu J0 32I10Y2d

Juswubisse ‘yibus| aul| ‘uoneiuspul ‘saoeiq AlUno ‘Buioeds ‘Buiweu Jaiuspl ‘Buiuweu |
:suolje|olA apinb 81A1s BuiMo||0) By} JO Yyoea U104 pajonpap aq ||im juiod auQ

‘AloAnndiiosap 1ng A|gsiouod paweu
sjuswnBle pue suolouny ‘se|qele

"9p02 U] JO SUOI109S
juepodwii a1esedas 0} pasn sbuipeay

"BUISNUOD SBWEU S|gELIBA JUSWILLIOD "(BWEU S} WOoJ) SNOIAJO jou

BWOoS "M} 00} Jo ‘Auewl
001 Jayyis :Ajprendoiddeul
pash SjUSWWOD SWOoS

J1) uonouny Jo esodind a1eolpul 0} pue
‘swiyiiobie peyeoldwod oul ybisul
apinoid 03 9po9 JO MOy Jou pue

"sloym sssjwess e Jo ued
WLIO} SJUSWILLIOD puUB 8p0Y) "PuE)SIspUN

jouue) J100d ‘puelsiepun 01 pieH 1ng ‘peas 0} Ases Ajlesousn) ‘Aym sy} SSNOSIp 0] pash SjuswwWo)) 0O} Ases pue ‘peal 0] ainses|d e S| 8p0D Aern
a1sed pue Adoo jou ‘suoiouny
'sd00J|-10} JO pesisul suolouny Aq pawuopad ale sysel pajesadal
‘a1sed pue Adoo PasLI0109A {sluswalels JI pareoldwod pue ‘ysel 9|buls e sarensdesus uoizouny
JO 9SN BAISUSIX] JO peajsul Buniesgns Jeyoeseyd yoe3 ‘uoneolidnp woiy 8.4 8poD
‘pajuUsAUIB) :9|dwexas 404 8p0oo 8oNnpaJ 0}
suoiouny Bunsixa pasn swolp! Buiwwelboid uowwon ‘auop qol ayy 106 01 pasn
J0 ‘Ajereuoiddeul SI1 9P09 JO JUNOWE WNWUIW d1n|josge
pasnh suoioun4 uebs|e Jou INg ‘9|gEMJION BU} 1BY} SUBBW AJBINQEOOA Y JO Aieisepy UOIQNoexg
‘AjIses pan|jos aq ued ey} saoaid
juspuadapul ol wajqoid syl syeaiq
uonisodwodsp wajqoid [njybnoy |
‘pame} Js|dwis apo2 sy} Bupjew jo
A|daap AbBareng ‘paysni sAem SNOIAQO SWOS Passiw ‘Buiuueld Areuiwijaid
‘Buiuueld Jo wussqge sem Buiuue|d aaey 1ng Yo ABsjeis ||eJano ‘ABajesis ||eJono Ul SMe[} SWOS INg JO 9ouspIAS sanIb pue ABajelis
JOo @ouspIne ON Inqg Yayieboy sbuey |e Y :pepasu Buiuueld aiopy ‘Buipod ai10jeq Buiuueld JO 90USPIAT |[BJSAC SBQLIOSSP JUBWIWIOD AI0JONPOJIU| buiuueld
8 c € 14]
() exenbapeu| (0/4) Miom spasN (+8/-V) 8|qeydeddy (v) poon (+v) buipueisino

	Introduction
	Data analysis
	Programming
	Conclusion
	Syllabus
	Code review
	Rubrics

