Engineering data analysis Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. What is data analysis?

2. Why use a programming language?
3. Why use R?
4. Why use DSLs within R?
5. Case study: Mexico mortality

Data arRetsisirathsiqjistesqrocess by whidbydeitaidbedetmenecomes understanndemstakntingedgewledge and insioghtul insight

Data analysis is the process by which data becomes understanding, knowledge and insight

Access

Understand

Understand

Understand

Understand

Understand


```
# Load data and create smaller subsets
tb <- read.csv("tb.csv")
tb2008 <- subset(tb, year == 2008)
\# Choropleth map
borders <- read.csv("world-borders.csv")
choro <- merge(tb2008, borders, by = "iso2")
choro <- choro[order(choro$order), ]
qplot(long, lat, data = choro, fill = cut_number(rate, 5), geom = "polygon", group =
group) + scale_fill_brewer("Rate", pal = "Blues")
# Bubble maps
centres <- read.csv("world-centres.csv")
bubble <- merge(centres, tb2008, by = "iso2")
world_coord <- coord_map(xlim = c(-180, 180), ylim = c(-50, 70))
# This is basically what a choropleth is showing us
qplot(long, lat, data = bubble, size = area, colour = rate) +
    scale_area(to = c(2, 25), legend = FALSE) +
    world_coord
# More traditional options
qplot(long, lat, data = bubble, size = rate) + world_coord
qplot(long, lat, data = bubble, size = log10(pop), colour = rate) +
    world_coord
# Even better if we add world boundaries
ggplot(bubble, aes(long, lat)) +
    geom_polygon(data = borders, aes(group = group)) +
    geom_point(aes(colour = rate)) +
    coord_map()
ggsave("world-4.png", width = 8, height = 6, dpi = 128)
# Works better if we tweak aesthetics
ggplot(bubble, aes(long, lat)) +
    geom polvgon(data = borders. aes(group = group). colour = "grev70".
Saturday, July 23, 2011
```


Communication

Mny R?

SEXP body, formals, actuals, savedrho;
volatile SEXP newrho;
SEXP f, a, tmp;
RCNTXT cntxt;
/* formals = list of formal parameters */
/* actuals $=$ values to be bound to formals */
/* arglist = the tagged list of arguments */

Open source

formals = FORMALS(op);
body = BODY(op);
savedrho $=$ CLOENV (op);
/* Set up a context with the call in it so error has access to it */
begincontext(\&cntxt, CTXT_RETURN, call, savedrho, rho, arglist, op);
/* Build a list which matches the actual (unevaluated) arguments to the formal paramters. Build a new environment which contains the matched pairs. Ideally this environment sould be hashed. */

PROTECT(actuals = matchArgs(formals, arglist, call));
PROTECT(newrho = NewEnvironment(formals, actuals, savedrho));
/* Use the default code for unbound formals. FIXME: It looks like this code should preceed the building of the environment so that this will also go into the hash table. */
/* This piece of code is destructively modifying the actuals list, which is now also the list of bindings in the frame of newrho. This is one place where internal structure of environment bindings leaks out of envir.c. It should be rewritten eventually so as not to break encapsulation of the internal environment layout. We can live with it for now since it only happens immediately after the environment creation. LT */

Saturday, July 23, 2011

Connectivity

Domain specific languages

"If any number of magnitudes are each the same multiple of the same number of other magnitudes, then the sum is that multiple of the sum." Euclid, ~300 BC

"If any number of magnitudes are each the same multiple of the same number of other magnitudes, then the sum is that multiple of the sum." Euclid, ~300 BC

ab
 $+$
 $a c=a(b+$
 c)

$$
y \sim x
$$

$$
y \sim x 1+x 2
$$

$$
y \sim x 1 * x 2
$$

$$
y \sim x 1+x 2+x 1: x 2
$$

$$
y \sim s(x)
$$

cbind(y1, y2) ~ x1 * x2

Visualise

ggplot(data, aes(x = var1, y = var2, colour = var3) + geom_point() + geom_smooth()
subset
mutate
arrange
summarise
*
by operator (ddply)
$+$
join
match_df

Case study

Motivation

Data: Individual data on all 532,355 deaths in Mexico in 2008.

Variables: cod, hod, dod, location, dob, marital status, job, ...

Question: How do DSLs help us understand this data?

cause of ceain

library (ggplot2)
library(plyr)
load("deaths.rdata")
cause <- arrange(count(deaths, "cod"), desc(freq)) cause <- join(cause, codes)
ggplot(cause, aes(x = freq, y = disease) + geom_point() + scale_x_log10()
top20 <- head(cause, 20)
ggplot(top20, aes(freq / 1e5, reorder(disease, freq)) + geom_point() +
scale_y_reverse(drop = T) +
scale_x_log10("deaths (x 10,000)", breaks = 1:5)

rime of ceath

deaths\$hod[deaths\$hod $==99]$ <- NA deaths\$hod[deaths\$hod == 24] <- NA
hod <- subset(count(deaths, "hod"), !is.na(hod)) ggplot(hod, aes(x = hod, $y=f r e q)$) + geom_line()

\# Compute deaths by hour by cause, and the \# proportion dying at each hour hod2 <- count(deaths, c("cod", "hod")) hod2 <- ddply(hod2, "cod", mutate, prop $=$ freq / sum(freq))
\# Compute for overall abundance overall <- ddply(hod2, "hod", summarise, freq_all = sum(freq))
overall <- mutate(overall, prop_all = freq_all / sum(freq_all))
\# Combine the time hod2 <- join(overall, hod2, by = "hod")
\# Find outliers
devi <- ddply(hod2, "cod", summarise,
n = sum(freq),
dist = mean((prop - prop_all)^2))
devi <- subset(devi, n > 50)


```
devi$resid <- resid(rlm(log(dist) ~ log(n),
    data = devi))
# ...
unusual <- subset(devi, resid > 1.5)
hod_unusual_big <- match_df(hod2,
    subset(unusual, n > 350))
hod_unusual_sml <- match_df(hod2,
    subset(unusual, n <= 350))
```


Challenge

First need location:

New data source

Only locations with >100 deaths

locs <- count(deaths, c("long", "lat"))
ggplot(locs, aes(long, lat)) +

$$
\begin{aligned}
& \text { geom_polygon(aes(group }=\text { group), data }=\text { states, } \\
& \text { colour }=\text { "white", fill }=\text { "grey } 90 ")+ \\
& \text { geom_point (aes(size }=\text { freq, order }=\text { freq), } \\
& \text { alpha }=1 / 3, \text { to }=c(0.1,6))+ \\
& \text { scale_area(breaks }=c(1,100,500,1000,5000, ~ 10000), \\
& \text { to }=c(0.5,10))+
\end{aligned}
$$

coord_map()

Hours of pain and suffering ...

Locations within 50 km of a weather station

ggplot(daily, aes(temp_min, prop)) + geom_point(alpha = 1/3) + geom_smooth(se = F, size = 1) + facet_wrap(~ disease2)

Conclusions

A programming language gives you: reproducibility, automation, communication, but has a learning curve.

R gives you: freedom, a community, connectivity, building blocks, but the community can be prickly and it is slow (relative to other languages).

Thoughtful DSLs should make it easier to solve common data analysis problems.

Office hours

MTV-1098-1-Gwydir
3-4pm
hadley@rice.edu

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

