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We propose to furnish visual statistical methods with an inferential framework
and protocol, modelled on con�rmatory statistical testing. In this framework, plots
take on the role of test statistics, and human cognition the role of statistical tests.
Statistical signi�cance of \discoveries" is measured by having the human viewer
compare the plot of the real data set with collections of plots of simulated data sets.
A simple but rigorous protocol that provides inferential validity is modelled after
the \lineup" popular from criminal legal procedures. Another protocol modelled
after the \Rorschach" inkblot test, well-known from (pop-)psychology, will help
analysts acclimatize to random variability before being exposed to the plot of the
real data. The proposed protocols will be useful for exploratory data analysis, with
reference data sets simulated by using a null assumption that structure is absent.
The framework is also useful for model diagnostics in which case reference data
sets are simulated from the model in question. This latter point follows up on
proposals by Gelman (2004). Adopting the protocols will mean an adjustment in
working procedures for data analysts, adding more rigour, and teachers might �nd
that incorporating these protocols into the curriculum improves their students’
statistical thinking.
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1. Introduction
Exploratory data analysis (EDA) and model diagnostics (MD) are two data analytic
activities that rely primarily on visual displays and only secondarily on numeric
summaries. EDA, as championed by John W. Tukey (Tukey 1965), is the free-
wheeling search for structure that allows the data to inform and even to surprise
us. MD, which we understand here in a narrow sense, is the open-ended search for
structure not captured by the �tted model (setting aside the diagnostics issues of
identi�ability and in
uence). Roughly speaking, we may associate EDA with what
we do to raw data before we �t a complex model, and MD with what we do to
transformed data after we �t a model. (Initial data analysis (IDA) as described in
Chat�eld (1995), where the assumptions required by the model �tting are checked
visually, is considered a part of, or synonymous with, EDA.) We are interested here
in both, EDA and MD, in so far as they draw heavily on graphical displays.
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EDA, more so than MD, has sometimes received an ambivalent response. When
seen positively, it is cast as an exciting part of statistics that has to do with \discov-
ery" and \detective work"; when seen negatively, EDA is cast as the part of statistics
that results in unsecured �ndings at best, and in the over- or mis-interpretation of
data at worst. Either way, EDA seems to be lacking something: discoveries need
to be con�rmed, and over-interpretations of data need to be prevented. Univer-
sal adoption of EDA in statistical analyses may have su�ered as a consequence.
Strictly speaking, graphical approaches to MD deserve a similarly ambivalent re-
sponse. While professional statisticians may resolve their ambivalence by resorting
to formal tests against speci�c model violations, they still experience the full per-
plexity that graphical displays can cause when teaching, for example, residual plots
to student novices. Their countless questions combined with their tendencies to
over-interpret plots impress on us the fact that reading plots requires calibration.
But calibrating inferential machinery for plots is lacking, and this fact casts an air
of subjectivity on their use.

The mirror image of EDA’s and MD’s inferential failings is con�rmatory statis-
tics’ potential failure to �nd the obvious. When subordinating common sense to
rigid testing protocols for the sake of valid inference, con�rmatory data analysis
risks using tests and con�dence intervals in assumed models that should never have
been �tted, when EDA before, or model diagnostics after, �tting could have revealed
that the approach to the data is 
awed and the structure of the data required al-
together di�erent methods. The danger of blind con�rmatory statistics is therefore
\missed discovery". This term refers to a type of failure that should not be con-
fused with either \false discovery" or \false non-discovery", terms now often used
as synonyms for \Type I error" and \Type II error". These con�rmatory notions
refer to trade-o�s in deciding between pre-speci�ed null hypotheses and alternative
hypotheses. By contrast, \missed discovery" refers to a state of blindness in which
the data analyst is not even aware that alternative structure in the data is wait-
ing to be discovered, either in addition or in contradiction to present \�ndings".
Statistics therefore needs EDA and MD because only they can force unexpected
discoveries on data analysts.

It would be an oversimpli�cation, though, if statistics were seen exclusively in
terms of a dichotomy between the exploratory and the con�rmatory. Some parts
of statistics form a mix. For example, most methods for nonparametric modelling
and model selection are algorithmic forms of data exploration, but some are given
asymptotic guarantees of �nding the \truth" under certain conditions, or they are
endowed with con�dence bands that have asymptotically correct coverage. Coming
from the opposite end, con�rmatory statistics has become available to ever larger
parts of statistics due to inferential methods that account for multiplicity, that is, for
simultaneous inference for large or even in�nite numbers of parameters. Multiplicity
problems will stalk any attempt to wrap con�rmatory statistics around EDA and
MD, including our attempt to come to grips with the inferential problems posed by
visual discovery.

The tools of con�rmatory statistics have so far been applied only to features in
data that have been captured algorithmically and quantitatively, and our goal is
therefore to extend con�rmatory statistics to features in data that have been dis-
covered visually, such as the surprise discovery of structure in a scatterplot (EDA),
or the unanticipated discovery of model defects in residual plots (MD). Render-
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ing this goal attainable requires a re-orientation of existing concepts whilst staying
close to their original intent and purpose. It consists of identifying the analogues,
or adapted meanings, of the concepts of (1) test statistics, (2) tests, (3) null dis-
tribution, and (4) signi�cance levels and p-values. Beyond a one-to-one mapping
between the traditional and the proposed frameworks, inference for visual discov-
ery will also require considerations of multiplicity due to the open-ended nature of
potential discoveries.

To inject valid con�rmatory inference into visual discovery, the practice needs
to be supplemented with the simple device of duplicating each step on simulated
data sets. In EDA, we draw data sets from simple generic null hypotheses; in MD,
we draw them from the model under consideration. To establish full con�rmatory
validity, there is a need to follow rigorous protocols, reminiscent of those practised
in clinical trials. This additional e�ort may not be too intrusive in the light of
the inferential knowledge acquired, the sharpened intuitions and the greater clarity
achieved.

Inference for visual discovery has a pre-history dating back half a century. A
precursor much ahead of its time, both for EDA and MD, is Scott et al. (1954).
Using astronomical observations they attempted to evaluate newly proposed spa-
tial models for galaxy distributions (Neyman et al. 1953), by posing the following
question: \If one actually distributed the cluster centres in space and then placed
the galaxies in the clusters exactly as prescribed by the model, would the resulting
picture on the photographic plate look anything like that on an actual plate...?"
In a Herculean e�ort, they proceeded to generate a synthetic 6o � 6o \plate" by
choosing reasonable parameter values for the model, sampling from it, adjusting for
\limiting magnitude" and \random ‘errors’ of counting", and comparing the result-
ing \plate" of about 2,700 �ctitious galaxies with a processed version of the actual
plate, whose foreground objects had been eliminated. This was done at a time when
sampling from a model involved working with published tables of random numbers,
and plotting meant drawing by hand { the e�ort spent on a single instance of visual
evidence is stunning! The hard work was of course done by \Computers", consisting
of an o�ce with three female assistants whose work was acknowledged as requiring
\a tremendous amount of care and attention." (The plots, real and synthetic, are
reproduced in Brillinger’s 2005 Neyman Lecture (Brillinger 2008), albeit with undue
attributions to Neyman. Scott et al. (1954) acknowledge Neyman only \for his con-
tinued interest and for friendly discussions.") Much later, when computer-generated
plotting and sampling started to make headway into data analytic practice, there
are more examples, and also several voices urging analysts to gauge their sense for
randomness by looking at plots of random data. Daniel (1976) has 40 pages of null
plots in his book on statistics applied to industrial experiments. Diaconis (1983)
describes \magical thinking" as the natural human tendency to over-interpret ran-
dom visual stimuli. Davison & Hinkley (1997) in their book on bootstrap methods
(x4.2.4 \Graphical Tests") recommend overlaying lines corresponding to quantiles
from random samples, of the same size as the data, to normal probability plots.
The practice was implemented in an early visualization system, Dataviewer, and
described in Buja et al. (1988) (in the x\Informal Statistical Inference"), some of
which was revisited in the XGobi system (Buja et al. 1996, 1999; Swayneet al.
1992). Recently, it is Bayesians who have systematized the idea of MD as visualiz-
ing data sets simulated from statistical models (Gelman (2004) and the references
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therein). In spatial statistics, Brillinger can be cited for talks that keep alive the
idea of \synthetic plots", plots of data simulated from a complex model. In a re-
lated tenor are the ideas of Davies (2008), which are discussed further inx5. Also,
tangential to this paper is the discussion, comparison or even recommendation on
the good practice of visual methods for data analysis, for which there exists a rich
literature, e.g. Cleveland (1993), Tufte (1983), Cardet al. (1999), Buja et al. (1996),
Wilkinson (1999), Chen et al. (2007).

In the following sections, we �rst outline the parallelism between established
tests of quantitative features and proposed inference for qualitative discovery (x2).
We brie
y mention approaches to reference distributions from which \null data sets"
can be sampled (x3, with further details deferred to the supplementary material).
We then discuss protocols that specify how simulated null data sets are to be used
in order to attain inferential validity ( x4 and x5). In the remaining sections we
illustrate our preferred protocol with several practical examples.

2. Discoveries as Rejections of Null Hypotheses
Here we outline a parallelism between quantitative testing and visual discovery.
The steps are depicted in table 1. The initial step is to take seriously the colloquial
identi�cation of the term \discovery" with \rejection of a null hypothesis". This is
entirely natural for MD, where the model constitutes the null hypothesis, and any
model defect found with diagnostics can be interpreted as rejection of the model in
the sense of statistical testing. It requires some elaboration for EDA, because data
analysts may not usually think of their discoveries as rejections of null hypotheses.
The \discovery" of skewness, for example, in univariate distributions can be taken
as a rejection of symmetry or normality, and the discovery of an association can
be taken as the rejection of independence. Such null hypotheses help sharpen the
understanding of a \discovery", because they provide a canvas of unstructured data
situations upon which to judge the discovered structure.

In EDA, the same null hypothesis can be rejected for many reasons, that is, in
favour of many possible alternatives. For example, the null assumption of indepen-
dence between two variables can be rejected by the discovery of linear, non-linear
but smooth, discontinuous or clustered association. Similarly, in MD the �tted
model can be rejected for many reasons; in standard linear models such reasons
may be non-linearities, skew residual distributions, heterogeneous error variances
or lurking variables. In the parallelism, this can be interpreted to be that many
\discoveries" can be contrasted against a background provided by the same null
hypothesis.

One arrives quickly at a critical divergence between quantitative testing and
visual discovery: quantitative testing requires the explicit prior speci�cation of the
intended \discoveries"; by contrast, the range of visual discoveriesin EDA and MD
is not pre-speci�ed explicitly. This di�erence is critical because the absence of prior
speci�cation is commonly interpreted as invalidating any inferences as post hoc
fallacies. This interpretation is correct if what is criticized is the naive tailoring
of a quantitative statistical test to a previously made qualitative discovery on the
same data, as when the discovery of two clusters is \con�rmed" with a post hoc
two-sample test. We address this by stylizing the set of discoverable features in a
plot as a collection of test statistics, call them T ( i ) (y )( i 2 I ), where y is the data
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For Real Data Set y

Multiple Quantitative Testing: Visual Discovery:

Null Hypothesis Null Hypothesis

+ +

Collection of Test Statistics: Plot of y : Visible Features
T ( i ) (y ) ( i 2 I )

2

4

6

8

10

10 20 30 40 50

+ +

Tests: Any Rejections? Human Viewer: Any
For which i 2 I is T ( i ) (y ) > c ( i ) ? Discoveries? What kind?

Table 1. Depiction of the parallelism between multiple quantitative testing and visual dis-
covery. Potential features of data that can be visible in the plot are thought of as a stylized
collection of test statistics. The actually observed features in a plot (the \discoveries")
correspond to the test statistics that result in rejection.

set and I is as yet a nebulous set of all possible features. Each test statisticT ( i ) (y )
measures the degree of presence of a feature in the data to which the human viewer
of the plot may respond. This collection of discoverable features, and thus, test
statistics, is (1) potentially very large and (2) not pre-speci�ed. Of these two issues
the second is the more disconcerting because it appears to be fatal for statistical
inference.

A way to address pre-speci�cation, for a given type of plot, would be to form a
list as comprehensive as possible of discoverable features and to formalize them in
terms of test statistics. Such an approach has indeed been attempted for scatter-
plots by Tukey & Tukey (1985) who coined the term \scagnostics"; more recently
Wilkinson et al. (2005) revived the idea with a list of features that includes \out-
lying", \skewed", \clumpy", \sparse", \striated", \convex", \skinny", \stringy",
\monotonic". Although these were not framed as formal test statistics, they are
de�ned quantitatively and could be used as such under any null distribution that
does not have these features. Yet, any such list of features cannot substitute for
the wealth and surprises latent in real plots. Thus, while cumulative attempts at
pre-specifying discoverable features are worthwhile endeavours, they will never be
complete. Finally, because few data analysts will be willing to forego plots in favour
of scagnostics (which in fairness was not the intention of either group of authors),
the problem of lack of pre-speci�cation of discoverable features in plots remains as
important and open as ever.

Our attempt at cutting the Gordian Knot of prior speci�cation is by proposing
that there is no need for pre-speci�cation of discoverable features. This can be
seen by taking a closer look at what happens when data analysts hit on discoveries
based on plots: they not only register the occurrence of discoveries but also describe
their nature, for example, the nature of the observed association in a scatterplot
of two variables. Thus data analysts reveal what features they respond to and
hence, in stylized language, which of the test statisticsT ( i ) (y )( i 2 I ) resulted in
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rejection. In summary, among the tests that we assume to correspond to the possible
discoveries but which we are unable to completely pre-specify, those that result in
discovery/rejection will be known.

The next question we need to address concerns thecalibration of the discovery
process or, in terms of testing theory, the control of Type I error. In quantita-
tive multiple testing one has two extreme options: for marginal or one-at-a-time
Type I error control, choose the thresholdsc( i ) such that P (T ( i ) (y ) > c ( i ) j y �
H0) � � for all i 2 I ; for family-wise or simultaneous Type I error control, raise
the thresholds so that P (there exists i 2 I : T ( i ) (y ) > c ( i ) j y � H0) � � . False
discovery rate (FDR) control is an intermediate option. Pursuing the parallelism
between quantitative testing and visual discovery further, we ask whether the prac-
tice of EDA and MD has an equivalent of Type I error control. Do data analysts
calibrate their declarations of discovery? Do they gauge their discoveries to guaran-
tee a low rate of spurious detection? They usually declare discoveries by relying on
past experience and trusting their judgement. In clear-cut cases of strong structure,
dispensing with explicit calibration is not a problem, but in borderline cases there
is a need to calibrate visual detection without resorting to the pseudo-calibration
of post hoc quantitative tests tailored to the discovery.

We argue in favour of a protocol that attacks the problem at the level of plots
as well as data analysts’ reactions to plots. We propose to consider data analysts
as black boxes whose inputs are plots of data and whose outputs are declarations
of discoveries and the speci�cs thereof. To calibrate the discovery process, simul-
taneously for all discoverable featuresT ( i ) (i 2 I ), the process is applied to \null
datasets" drawn from the null hypothesis, in addition to the real data set. In this
manner we learn the performance of the discovery process when there is nothing to
discover, which is the analogue of a null distribution. We also escape the post hoc
fallacy because we avoid the retroactive calibration of just the featureT ( i o ) that the
data analyst considers as discovered. In essence, we calibrate the family-wise Type I
error rate for the whole family of discoverable featuresT ( i ) (i 2 I ), even though we
may be unable to completely enumerate this family. If data analysts �nd structure
of any kind in the \null plots", they will tell, and we can (1) tally the occurrences
of spurious discoveries/rejections, and more speci�cally we can (2) learn the most
frequent types of featuresT ( i ) that get spuriously discovered.

3. Reference Distributions, Null Datasets and Null Plots
In visual inference, the analogue of a collection of test statistics is a plot of the
data. Accordingly, we introduce the concept of a \null distribution of plots" as
the analogue of the null distribution of test statistics. This refers conceptually to
the in�nite collection of plots of \null datasets" sampled from H0. In practice, we
sample a �nite number (R, say) of null datasets y � 1, y � 2, ..., y � R and generate a
gallery of R \null plots". See table 2 for a schematic depiction.

The question that arises next is what \sampling from H0" means because the
null hypothesis H0 rarely consists of a single distribution. Instead,H0 is usually
\composite", that is, a collection of distributions indexed by so-called \nuisance
parameters". Fortunately, the problem of reducing composite null hypotheses to
single \reference distributions" has found several solutions in statistical theory,
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Simulation-based Testing
Quantitative: Visual:

Real values of test statistics: T ( i ) (y ) Plot of real data set y :
2

4

6

8

10

10 20 30 40 50

Null values of test statistics: T ( i ) (y � 1) Plot of null data set y � 1 :
2

4

6

8

10

10 20 30 40 50

Null values of test statistics: T ( i ) (y � 2) Plot of null data set y � 2 :
2

4

6

8

10

10 20 30 40 50

. . . . . .

Null values of test statistics: T ( i ) (y � R ) Plot of null data set y � R :
2

4

6

8

10

10 20 30 40 50

Table 2. Depiction of simulation-based testing.

and three principles that can be applied are (1) conditioning, (2) plug-in, and
(3) posterior inference. Expressed as sampling schemes, they are:

(1) conditional sampling given a statistic that is minimal su�cient under H0,
(2) parametric bootstrap sampling whereby nuisance parameters are estimated

under H0, and
(3) Bayesian posterior predictive sampling.

Of these approaches, the �rst is the least general but when it applies it yields an
exact theory. It does apply to the examples used in this paper: null hypotheses of
independence in EDA, and of normal linear models in MD. The resulting reference
distributions are, respectively:

EDA: permutation distributions, whereby the observed values are subjected to ran-
dom permutations within variables or blocks of variables;

MD: \residual rotation distributions", whereby random vectors are sampled in
residual space with length to match the observed residual vector.

Of the two, the former are well-known from the theory of permutation tests, but
the latter are lesser known and were apparently explicitly introduced only recently
in a theory of \rotation tests" by Langsrud (2005). When H0 consists of a more
complex model where reduction with a minimal su�cient statistic is unavailable,
parametric bootstrap sampling or posterior predictive sampling will generally be
available. More details on these topics can be found in the supplementary material
for the paper. We next discuss two protocols for the inferential use of null plots
based on null datasets drawn from reference distributions according to any of the
above principles.
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4. Protocol 1: \The Rorschach"
We call the �rst protocol \The Rorschach", after the test that has subjects interpret
inkblots, because the purpose is to measure a data analyst’s tendency to over-
interpret plots in which there is no or only spurious structure. The measure is
the family-wise Type I error rate of discovery, and the method is to expose the
\discovery black box", meaning the data analyst, to a number of null plots and
tabulate the proportion of discoveries which are by construction spurious. It yields
results that are speci�c to the particular data analyst and context of data analysis.
Di�erent data analysts would be expected to have di�erent rates of discovery, even
in the same data analysis situation. The protocol will bring a level of objectivity to
the subjective and cultural factors that in
uence individual performance.

The Rorschach lends itself to cognitive experimentation. While reminiscent of
the controversial Rorschach inkblot test, the goal would not be to probe individual
analysts’ subconscious, but to learn about factors that a�ect their tendency to see
structure when in fact there is none. This protocol estimates the e�ective family-
wise Type I error rate but does not control it at a desired level.

Producing a rigorous protocol requires a division of labour between a protocol
administrator and the data analyst, whereby the administrator (1) generates the
null plots to which the data analyst is exposed and (2) decides what contextual
prior information the data analyst is permitted to have. In particular, the data
analyst should be left in uncertainty as to whether, or not, the plot of the real data
will appear among the null plots; otherwise, knowing that all plots are null plots,
the data analyst’s mind would be biased and prone to complacency. Neither the
administrator nor the data analyst should have seen the plot of the real data so as
not to bias the process by leaking information that can only be gleaned from the
data. To ensure protective ignorance of all parties, the administrator might program
the series of null plots in such a way that the plot of the real data is inserted with
known probability in a random location. In this manner, the administrator would
not know whether, or not, the data analyst encountered the real data, while the
data analyst would be kept alert because of the possibility of encountering the real
data. With careful handling, the data analyst can in principle self-administer the
protocol and resort to a separation of roles with an externally recruited data analyst
only in case of inadvertent exposure to the plot of the real data.

While the details of the protocol may seem excessive at �rst, it should be kept in
mind that the rigour of today’s clinical trials may seem excessive to the untrained
mind as well, and yet in clinical trials this rigour is accepted and heavily guarded.
Data analysts in rigorous clinical trials may actually be best equipped to work
with the proposed protocol because they already adhere to strict protocols in other
contexts. Teaching environments may also be entirely natural for the proposed
protocol. Teachers of statistics can put themselves in the role of the administrator,
while the students act as data analysts. Such teaching practice of the protocol
would be likely to e�ciently develop the students’ understanding of the nature of
structure and of randomness.

In the practice of data analysis, a toned-down version of the protocol may be
used as a self-teaching tool to help data analysts gain a sense for spurious structure
in datasets of a given size in a given context. The goal of the training is to allow
data analysts to informally improve their family-wise error rate and develop an
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awareness of the features they are most likely to spuriously detect. The training
is of course biased by the analysts’ knowledge that they are looking exclusively at
null plots. In practice, however, the need for looking at some null plots is often
felt only after having looked at the plot of the real data and having found merely
weak structure. Even in this event, the practice of looking at null plots is useful
for gauging one’s senses, though not valid in an inferential sense. Implementing
this protocol would e�ectively mean inserting an initial layer into a data analysis {
before the plot of the real data is revealed a series of null plots is shown!

5. Protocol 2: \The Lineup"
We call the second protocol \the lineup", after the \police lineup" of criminal
investigations (\identity parade" in British English), because it asks the witness to
identify the plot of the real data from among a set of decoys, the null plots, under the
veil of ignorance. The result is an inferentially valid p-value. The protocol consists
of generating, say, 19 null plots, inserting the plot of the real data in a random
location among the null plots, and asking the human viewer to single out one of the
20 plots as most di�erent from the others. If the viewer chooses the plot of the real
data, then the discovery can be assigned ap-value of 0.05 (=1/20) | under the
assumption that the real data also form a draw from the null hypothesis there is a
one in twenty chance that the plot of the real data will be singled out. Obviously
a larger number of null plots could yield a smallerp-value, but there are limits to
how many plots a human viewer is willing and able to sift through. This protocol
has some interesting characteristics:

� It can be carried out without having the viewer identify a distinguishing fea-
ture. He may simply be asked to �nd \the most special picture" among the
twenty, and he may respond by selecting one plot and saying \this one feels
di�erent but I cannot put my �nger on why this is so". This is a possibility in
principle, but usually the viewer will be eager to justify his selection by iden-
tifying a feature with regard to which the selected plot stands out compared
to the rest.

� This protocol can be self-administered by the data analyst once, if she writes
code that inserts the plot of the real data among the 19 null plots randomly
in such a way that its location is not known to the data analyst. A second
round of self-administration of the protocol by the data analyst will not be
inferentially valid because she will not only have seen the plot of the real data
but in all likelihood have (inadvertently) memorised some of its idiosyncrasies,
which will make it stand out to the analyst even if the real data form a sample
from the null hypothesis.

� Some variations of the protocol are possible whereby investigators are asked to
select not one but two or more \most special" plots, or rank them completely
or partially, with p-values obtained from methods appropriate for ranked and
partially ranked data.

� This protocol can be repeated with multiple independently recruited view-
ers who have not seen the plot of the real data previously, and thep-value
can thereby be sharpened by tabulating how many independent investigators
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picked the plot of the real data from among 19 null plots. If K investigators
are employed andk (k � K ) selected the plot of the real data, the combined
p-value is obtained as the tail probability P (X � k) of a binomial distribution
B (K; p = 1=20). It can hence be as small as 0:05K if all investigators picked
the plot of the real data (k = K ).

The idea of the lineup protocol is alluded to by x7 of Davies (2008) to illus-
trate his idea of models as approximations. He proposes the following principle: \P
approximates xn if data generated underP look like xn ." Davies illustrates with
a univariate example where a boxplot of the real data is indistinguishable from
nineteen boxplots of �(16 ; 1:2) data but stands out when mingled with boxplots of
�(16 ; 1:4) data. The ingredient that is missing in Davies (2008) is the general rec-
ommendation that nuisance parameters of the model be dealt with in one of several
possible ways (see the supplementary material) and that a protocol be applied to
grant inferential validity.

6. Examples

This section is structured so that readers can test lineup witness skills using the
examples. Following all of the lineups, readers will �nd solutions and explanations.
We recommend reading through this section linearly. Several of the data sets used
in the examples may be familiar, and if so we suggest that the familiarity is a
point of interest because readers who know the data may prove to themselves the
disruptive e�ect of familiarity in light of the protocol.

The �rst two examples are of plots designed for EDA: scatterplots and his-
tograms. For a scatterplot the most common null hypothesis is that the two vari-
ables are independent, and thus null data sets can be produced by permuting the
values of one variable against the other. Histograms are more di�cult. The simplest
null hypothesis is that the data are a sample from a normal distribution, and null
data sets can be simulated. The viewer’s explanation of the structure will be essen-
tial, though, because often the plot of the real data will be so obviously di�erent
from those of the simulated sets. The next two examples involve time series of stock
returns, to examine whether temporal dependence exists at all; here again permuta-
tions can be used to produce reference sets. MD is examined in the fourth example,
where rotation distributions are used to provide reference sets for residuals from a
model �t. The �fth example examines class structure in a large p, small n problem
{ the question being just how much separation between clusters is due to sparsity.
This might be a good candidate for the Rorschach protocol, to help researchers
adjust their expectations in this area. The last example studies MD in longitudinal
data, where a nonparametric model is �tted to multiple classes. Permutation of the
class variable is used to provide reference sets.

� Places Rated data: This example comes from Boyer & Savageau (1984) where
cities across the USA were rated in 1984 according to many features. The
data are also of interest because of two peculiarities: they consist of aggregate
numbers for US metropolitan areas, and they form a census, not a random
sample. In spite of these non-statistical features, it is legitimate to ask whether
the variables in this data set are associated, and it is intuitive to use random
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pairing of the variable values as a yardstick for the absence of association. The
variables we consider are \Climate-Terrain" and \Housing". Low values on
Climate-Terrain imply uncomfortable temperatures, either hot or cold, and
high values mean more moderate temperatures. High values of Housing indi-
cate a higher cost of owning a single family residence. The obvious expectation
is that more comfortable climates call for higher average housing costs. The
null hypothesis for this example is

Ho: Housing is independentof Climate-Terrain.

The decoy plots are generated by permuting the values of the variable Hous-
ing, thus breaking any dependence between the two variables whilst retaining
the marginal distributions of each. Figure 1 shows the lineup. The reader’s
task is to pick out the plot of the real data.

1. Is any plot di�erent from the others?
2. Readers should explicitly note why they picked a speci�c plot.

� Tips Data: This data set was originally analysed in Bryant & Smith (1995).
Tips were collected for 244 dining parties. Figure 2 shows a histogram of the
tips using a very small bin size corresponding to 10 cent widths. The null plots
were generated by simulating samples from a normal distribution having the
same range as the real data. Which histogram is di�erent? Explain in detail
how it di�ers from the others.

� HSBC (\The Hongkong and Shanghai Banking Corporation") daily stock
returns: two panels, the �rst showing the 2005 data only, the second the more
extensive 1998-2005 data (�gure 3). In each panel select which plot is the
most di�erent, and explain why.

� Boston Housing Data: This data set contains measurements on housing prices
for the Boston area in the 1970s. It was discussed in Harrison & Rubinfeld
(1978), used in Belsleyet al. (1980), and is available at Vlachos (2005). Fig-
ure 4 shows residuals plotted against the order in the data. Structure in the
real plot would indicate the presence of lurking variables. The plot of the real
data is embedded among decoys, which were produced by simulating from
the residual rotation distribution, as discussed in x3 and the supplementary
material. Which is the plot of the real data? Why? What may be \lurking"?

� Leukaemia data: This data set originated from a study of gene expression
in two types of acute leukaemia (Golub et al. 1999), acute lymphoblastic
leukaemia (ALL) and acute myeloid leukaemia (AML). The data set consists
of 25 cases of AML and 47 cases of ALL (38 cases of B-cell ALL and 9 cases
of T-cell ALL), giving 72 cases. After pre-processing, there are 3571 human
gene expression variables.
To explore class structure, one may seek a few interesting low-dimensional
projections that reveal class separations using a projection pursuit method,
such as LDA (Linear Discriminant Analysis) and PDA (Penalized Discrimi-
nant Analysis) indices (Lee 2003; Leeet al. 2005).
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Figure 1. Permutation lineup: Places Rated Data, Housing versus Climate-Terrain. The
plot of the real data is embedded among permutation null plots. Which plot shows the real
data? What features make it distinctive? Does knowledge of the meaning of the variables
in
uence the choice?
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Figure 2. Simulation lineup: Tips data, histograms of tip. Which histogram is most
di�erent? Explain what makes it di�erent from the others.
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Figure 3. Permutation lineup: HSBC Daily Returns 2005, time series of 259 trading days
(left), and HSBC Daily Returns 1998-2005, time series of 2087 trading days (right). The
plot of the real data is embedded among seven permutation null plots. Which plot is
di�erent from the others, and why?
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In supervised classi�cation problems, especially when the size of the sample is
small in relation to the number of variables, the PDA index is suitable. This
index is designed to overcome the variance estimation problems that arise in
the LDA index. When the sample size is small and the number of variables is
large, the LDA index produces unreliable results, which express themselves as
data piling. To avoid this problem, the PDA index uses a penalization term
regulated by a parameter � . In this example we examine the 2-dimensional
optimal projection using the PDA index with � =0.8. Figure 5 shows the plot
of the real data mingling among nineteen plots of data using permuted classes.
Which plot shows the real data? Why?

� Wages data: In this example we study the relationship between wages and ex-
perience in the workforce by race for a cohort of male high-school drop-outs.
The data are taken from Singer & Willett (2003), and contain longitudinal
measurements of wages (adjusted to in
ation), years of experience in the
workforce and several covariates, including the subject’s race. A nonparamet-
ric approach for exploring the e�ect of race is to �t a smoother separately to
each racial sub-group in the data. If there appears to be a di�erence between
the curves how can we assess the magnitude and signi�cance of the di�erence?
The null scenario is that there is no di�erence between the races. To generate
null sets, the race label for each subject is permuted. The number of longitu-
dinal measurements for each subject varies from one to thirteen. Each subject
has an id, and a race label. These labels are re-assigned randomly. There will
be the same number of subjects in each racial group, but the number of in-
dividual measurements will di�er. Nineteen alternative data sets are created.
For each data set a loess smooth (Clevelandet al. 1992) is calculated on each
sub-group, and these curves are plotted using di�erent line types on the same
graph, producing twenty plots, including the original. The plots also have the
full data set shown as points underlying the curves, with the reasoning being
that it is helpful to digest the di�erence between curves on the canvas of the
variability in the data. Here is the question for this example:

These twenty plots show smoothed �ts of log(wages) to years of
experience in the workforce for three demographic sub-groups. One
uses real data, and the other nineteen are produced from null data
sets, generated under an assumption that there was no di�erence
between the sub-groups. Which plot is the most di�erent from the
others, paying particular attention to di�erences in areas where
there are more data?
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Figure 4. Residuals of the Boston Housing Data plotted against order in the data. What
does the structure in the real plot indicate?
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Figure 5. These twenty plots show 2D projection pursuit projections of the best separation
of three classes in gene expression data, having 72 samples and 3571 variables. Which plot
is most di�erent from the others? Why?
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Figure 6. These twenty plots show loess smooths on measurements of log(wages) and
workforce experience (years) for three subgroups in a sample of high school dropouts.
The soft grey points are the actual data used for the smoothing, before dividing into
subgroups. One of the plots shows the actual data, and the remainder have had the group
labels permuted before the smoothing. Which plot is the most di�erent from the others,
with particular attention paid to more di�erences between curves where there is more
data? What is the feature in the plot that sets it apart from the others?
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This next part discusses the lineups, revealing the location of the real data, and
explaining what we would expect the viewers to see.

� Places Rated data (�gure 1): There is a slight positive association, but it is
not strong. Also, there are two clusters on the right, coastal California and
the Paci�c Northwest. The so-called \Climate-Terrain" index is really just
a measurement of how extreme versus how moderate the temperatures are,
and there is nothing in the index that measures di�erences in cloud cover and
precipitation.

Solution:Therealdataareshowninplot14.

� Tips Data (�gure 2): Three features are present in the real data: skewness,
multi-modality (with peaks at dollar and half-dollar amounts), and three out-
liers. Of these the �rst two are most obviously di�erent from the null sets,
and we would expect these to be reported by the viewer.

Solution:Therealdataareshowninplot11.

� HSBC (\The Hongkong and Shanghai Banking Corporation") daily stock
returns (�gure 3): For the short 2005 series on the left, the reader should
have had di�culty discerning the real data. This is a year of low and stable
volatility. Because volatility changes are the major time-dependencies in this
type of data, the real and permuted stock returns are quite indistinguishable.
The long series for the years 1998-2005, however, features quite drastic changes
in volatility, such as two volatility bursts, one in 1998 due to the Russian bond
default and the LTCM collapse, the other in 2001 due to the 9/11 event.
Thereafter, volatility peters out and stabilizes at a low level.

Solution:Inbothlineupstherealdataareshowninplot3.

� Boston Housing Data (�gure 4): The real residuals show pronounced structure
compared to the null residuals. For most parts the real residuals move more
tightly than the simulated ones, except for two major excursions in the high
300s. We may surmise that the order of the census tracts in the data is
spatially coherent in that tracts nearby in the data order tend to be nearby
geographically. If correct, the de�ciency established in this type of plot points
to spatially coherent lurking variables that are not in the data.

Solution:Therealdataareshowninplot20.

� Leukaemia data (�gure 5): Most plots with permuted data show separable
class structure. However, the plot of the real data shows the most separable
class structure, which suggests there appears to be stronger distinction be-
tween the classes than would occur by chance with so many variables and so
few cases.

Solution:Plot1showsrealdata.
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� Wages data (�gure 6): In the plot of the real data, the three curves di�er in
two ways: (A) the solid line 
attens out at about six years of experience and
never increases to be equal to the other two lines, (B) the three curves are all
di�erent in the later years, around ten years. Now which of these features is
present in the null data plots? Although a mid-experience 
attening is present
in several other plots (e.g. 18, 7), feature A is more extreme in the plot of the
real data than in any of the other plots. Feature B is present in almost every
other plot, and is more pronounced in a plot of the simulated data (e.g. 16,
1, 20).

Solution:Plot9showsrealdata.

In this example, the artefact in the null data is more pronounced than the
feature of interest in the real data. In fact, this pattern, where the smoothed
line dips around eight years of experience, is so pronounced we suspect that
many readers will have selected this as the most di�erent plot. A seasoned
data analyst might not be fooled, though, because it is well-known that there
can be edge e�ects with smoothers particularly when there are fewer points in
the extremes. Without the careful wording of the question to point out that we
are looking for di�erences, some readers may have been tempted to select plot
8, where the curves are almost all identical. The presence of multiple features
can be both bene�cial or detrimental to the process of assessing signi�cance
and exploring data. If a pronounced feature is present in the null data, readers
may be distracted from the feature of interest. However, in some cases the
readers may report a di�erent feature in the real data than the analyst had
noticed thus leading to discovery of new information about the data.
Aside: An alternative approach to graphical inference, to assess the signi�-
cance of the di�erence between smoothers, is to produce \null bands" based
on permutations of the race labels (Atkinson 1981; Bowman & Azzalini 1997;
Buja & Rolke 2009). The race labels of the subjects are permuted many
times and a smoother is �tted to each of the resulting samples. These dif-
ferent smooths are combined to produce an envelope for the smoother of the
actual data, produced under the assumption that there is no di�erence be-
tween the races. If we did this for these data, we would �nd that for whites
and hispanics the �t stays within the null bands, but for blacks the actual �t
dips low, out of the limits between experience values 6-10, suggesting there
is something di�erent about the wage experience for this group. The bene-
�t of the graphical inference approach over the null bands approach is that
the entire curve from each permutation is examined, so that curve to curve
variation can be seen. Davison & Hinkley (1997) and Pardoe (2001) have an
intermediate solution between the null band and graphical inference, in which
the curves are overlaid on the one plot.

7. Conclusions and Caveats and Future Investigations
This paper proposes two protocols to formalize the process of visual discovery, the
\Rorschach" and \lineup". Each helps to quantify the strength of signal-vs-noise,
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similar to numerical hypothesis testing. The Rorschach protocol provides a prior-
to-analysis visual calibration training for the data analyst, and the lineup provides
an inferentially valid test of whether what we see in a plot is really there. Here are
some of the issues that need consideration before more general implementation:

� The wording of the instructions to viewers can a�ect their plot choices. (This is
a familiar issue in survey design (Dawes 2000).) Additional information might
be included to help viewers make wise choices. For example, the introduction
to the wages data example guided viewers towards the higher data density area
in the middle of the x range. The purpose was to pre-empt the naive choice of
selecting the plot exhibiting the strongest end-e�ects of the smoothed lines,
which a trained statistician would probably avoid. Should this methodological
e�ect factor into the family-wise Type I error rate? In the other direction, how
much personal baggage is brought to the problem by informing the viewer
about the nature of the demographic subsets being based on race? Would it
be better to mask the race variable, and call them group 1, 2, 3?

� Ancillary information related to the viewer’s response will be useful. For ex-
ample, the time that an individual takes to arrive at a choice might be included
in the analysis of the results. When the choice comes quickly it might suggest
that the pattern is strong (tips example, �gure 2), but when it takes longer
it might suggest that the signal is weak (HSBC 2005 data, �gure 3), or the
viewer is not as con�dent in their choice. It may be useful to ask the viewer
to rate their con�dence in their answer. Limiting the time it takes to answer
may produce less reliable results.

� Readers will respond di�erently to the same plots, depending on training and
even state of mind (Whitson & Galinsky 2008). There are, however, com-
mon traits that we should be aware of and expect to see from all viewers; for
example, our visual perception corresponds strongly to gaps, colour inconsis-
tencies and e�ects in the edges of plot regions, but may not pick up smaller
deviations in large patterns. Subjectivity of results in visual test procedures
is unavoidable. The Rorschach protocol may help to determine the baseline
for each individual.

� Use of these protocols might have positive e�ects on improving statistical
graphics used in the community. Because analysts are forced to think about
the null hypothesis associated with a plot, it may hone their abilities to choose
appropriate graphics for their tasks. With additional work, use of good princi-
ples in constructing plots might also be improved: pre-attentive plot elements
for the data, attentive plot elements for grids and axes to allow look up only
when needed.

� In Tukey’s approach to EDA, analysis was sometimes done in an iterative
manner: strong patterns are removed, and the residuals are re-tested to reveal
�ne scale patterns. To use this approach care might be needed to avoid bias
of the secondary tests by exposure to the primary-stage plots.

� One way to reach a substitute for a jury could be the use of a web service
such as Amazon’s Mechanical Turk Amazon 2008). Sets of plots based on the
lineup protocol will be evaluated by so-called human \turkers", thus enabling
us to gauge family-wise Type I error rates for each data situation. It also
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allows us to easily capture time until completion of the task, an explanation
for the individual’s pick in a lineup, together with a (subjective) con�dence
rating. While \turkers" do not have the make-up of a representative popu-
lation sample, we can collect some demographic information with the results
and try to correct for that. The Mechanical Turk has also been used to collect
data for the Fleshmap project by Vi�egas & Wattenberg (2008).

These points suggests directions for future research. We hope the paper provides
something of a road-map to the incorporation of graphical discoveries as an integral
part of statistical data analysis, consequently enhancing our ability, as statisticians,
to handle increasingly di�cult data problems. As an example, the plots in this paper
were made using the R package,ggplot2 (Wickham 2008), using new functions
which semi-automate the lineup plot format.

This work has been partly supported by the National Science Foundation grant DMS0706949.
Supplementary material can be found at the journal web site.
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