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Visualisation Modelling

+Uncovers the 
unexpected

- Slow
- Cognitive 

biases

- Only discovers 
what was 
anticipated

+Fast
+Mathematically 

well founded
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Neural 
networks

Using models + visualisation to 
illuminate how a model works
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Display the model 
in the data space

Look at many 
members of a collection

Explore the process of 
fitting, not just the end resultSt
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Neural networks

• Modelled on the way that brains work

• Normally treated as a black box.  Can 
we gain more insight into how they 
work?

• Single hidden-layer neural network: 
nnet R package
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Display the model in 
data space

Existing work
Saturday, July 23, 2011
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How do neural 
networks work?
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classes

nodes

variables
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y1 y3y2

x1 x3x2 x5x4

yj = logit(αj + ∑wijxi)

w11 w53

w32
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c1 c2

x1 x3x2

cj = logit(αj + ∑sijxi)
s11 s32
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x1 x2
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Look at all members 
of the collection
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How did I find 
that model?
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x1 x2

Gradient descent
Many random starts
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Prediction accuracy

co
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Ensembles of 
linear models

Using models + visualisation to 
illuminate the underlying data
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Display the model 
in the data space

Look at many 
members of a collection

Explore the process of 
fitting, not just the end resultSt
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Data
• Fertility in French-speaking Swiss 

provinces in the late 1800's

• Predict fertility based on:

• proportion of agricultural workers
• average performance on an army examination
• amount of higher education
• proportion of Catholics
• infant mortality
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Model

• Linear modes with all combinations of 
covariates (2p models)

• What can looking at all models tell us 
that looking at just a few can’t?
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Model

Model ID

Model fit 
statistics

Observation

Obs ID

Original data

Model-
observation 
summaries

Model-Estimate

Model ID

Estimate ID

Raw

Standardised

Model-Observation

Obs ID

Model ID

Diagnostics

Fit quality

Estimate

Estimate ID

n

model-estimate 
summaries

many

1

many

1

many

1

many

1

Uncertainty

y=! + "x 

f(!, ") 
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Conclusions
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Other methods

• MANOVA

• Self-organising maps (clusterfly)

• Hierarchical clustering (clusterfly)

• Classification methods (classifly)

• Projection pursuit (tourr)
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The future
• Currently iteration between modelling a 

and visualisation a little clunky: no 
software has both the visualisation and 
the modelling capabilities

• We believe R has the most potential, 
and are working hard to bring 
interactive graphics into R

Visualise

Model
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