### Removing the blindfold

Visualising statistical models

#### **Hadley Wickham**

Assistant Professor Dobelman Family Junior Chair Department of Statistics Rice University



#### Access









| Visualisation                                                                             | Modelling                                                                                                              |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>+ Uncovers the unexpected</li> <li>- Slow</li> <li>- Cognitive biases</li> </ul> | <ul> <li>Only discovers<br/>what was<br/>anticipated</li> <li>Fast</li> <li>Mathematically<br/>well founded</li> </ul> |



## Neural networks

Using models + visualisation to illuminate how a model works

Display the model in the data space

Look at many members of a collection

Explore the process of fitting, not just the end result

#### Neural networks

- Modelled on the way that brains work
- Normally treated as a black box. Can we gain more insight into how they work?

• Single hidden-layer neural network: nnet R package



# Display the model in data space









# How do neural networks work?









#### Look at all members of the collection









### How did I find that model?







## **Ensembles of linear models**

Using models + visualisation to illuminate the underlying data

Display the model in the data space

#### Look at many members of a collection

Explore the process of fitting, not just the end result

#### Data

- Fertility in French-speaking Swiss provinces in the late 1800's
- Predict fertility based on:
  - proportion of agricultural workers
  - average performance on an army examination
  - amount of higher education
  - proportion of Catholics
  - infant mortality

#### Model

- Linear modes with all combinations of covariates (2<sup>p</sup> models)
- What can looking at all models tell us that looking at just a few can't?















### Conclusions

#### Other methods

- MANOVA
- Self-organising maps (clusterfly)
- Hierarchical clustering (clusterfly)
- Classification methods (classifly)
- Projection pursuit (tourr)

# The future Visualise Model

- Currently iteration between modelling a and visualisation a little clunky: no software has both the visualisation and the modelling capabilities
- We believe R has the most potential, and are working hard to bring interactive graphics into R