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Abstract

Programming paradigms help us understand the differences and similarities between fundamental choices
in language design. This paper looks at R in the context of three paradigms of object oriented program-
ming: mutable vs. immutable objects, generic-function vs message-passing methods, and class-based vs.
prototype-based inheritance.

The paper also describes a new OO package for R, mutatr, which provides mutable objects with message-
passing methods and prototype-based inheritance. The mutatr package is available on CRAN.

1 Introduction

A programming paradigm is a fundamental style of computing programming, like object-oriented, functional,
declarative, procedural and logical. Knowing what paradigms a language supports allows us to quickly get
a feel for the attributes of that language. This paper explores some lower level paradigms of object oriented
(OO) design. This will help us understand some of consequences of design decisions made when R was
written, and will identify areas of interest for future exploration.

The paper is broken down as follows. Section 2 discusses the programming paradigms that impact the
design of an object system. I compare and contrast mutable vs. immutable objects, message-passing vs.
generic-function methods, and class-based vs. prototype-based inheritance. Section 3 introduces a new OO
package for R, mutatr, available from CRAN. It provides mutable objects with message-passing methods and
prototype-based inheritance. Three case studies that these features shown in Section 4 and Section 5 wraps
up the paper with general conclusions and suggestions for future directions.

2 Paradigms

Programming paradigms help us to understand the high-level differences and similarities between different
programming languages. A good knowledge of paradigms is useful when pairing a programming language
(or very general approach) with a particular problem. This paper discusses three of the many paradigms,
focussing on those of importance when designing an object oriented system:

• Mutable vs. immutable objects, Section 2.1.

• Generic-function vs. message-passing methods, Section 2.2.

• Class-based vs. prototype-based inheritance, Section 2.3.

Table 1 shows how R’s OO systems fall into these categories. This table is somewhat of a simplification
because both S3 and S4 can be used in conjunction with R’s reference-based environment object to produce
mutable objects (this is how R.oo works), but it reflects common practice. The creation of ad hoc OO systems
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System Mutability Methods Inheritance Reference

S3 immutable generic functions class-based
S4 immutable generic functions class-based
R.oo mutable generic functions class-based Bengtsson (2003)
OOP mutable message passing class-based Chambers and Temple Lang (2001)
proto mutable message passing prototype-based Kates and Petzoldt (2007)
mutatr mutable message passing prototype-based

Table 1: Object oriented systems in R.

using lexical scoping is also common, as typified by Section 2.3 of Ihaka and Gentleman (1996) and Section
4 of Gentleman and Ihaka (2000)

If you are interested in learning more, a brief overview is available in Van Roy (2009), and a full exposi-
tion in van Roy and Haridi (2004). These resources are highly recommended reading for understanding the
tradeoffs of the programmatic paradigms that R, or any other language, has adopted.

2.1 Mutable vs immutable

R has many similarities to a functional programming language, and supports a functional programming
style. A functional style strives to stay close to the mathematic definition of a function, that is, a fixed
relation between an input and output set. In R, most functions return the same output when given the same
input, and their only way of interacting with the outside world is through their return value. There are
exceptions, such as loading data or exporting graphics which must affect the world outside R, and pseudo
random number generators which are not so useful if they always return the same “random” numbers.

Unlike other programming languages, it is difficult for a function to modify its arguments (very little is
impossible in R because it is so flexible, but this is generally true). Figure 1 shows a simple example. If you
ran this code, you would see that l$a is not modified. Here an imperative interface masks an underlying
functional approach. Internally, x$a <- 2 is a combination of two steps: first construct a modified copy of x,
then change the binding of x to the new object; the bindings change, but the original x does not. This makes R
objects immutable: whenever it looks like you are modifying an object, you are actually creating a modified
copy. There are a few exceptions to this rule, such as external pointers, environments and weakrefs, but
these are typically only used by those modifying the internals of R, or when connecting R to a programming
language with non-functional semantics.

l <- list(a = 1)

f <- function(x) {

x$a <- 2

}

l$a

# [1] 1

f(l)

l$a

# [1] 1

Figure 1: When an R function tries to modify its inputs, it instead creates a modified copy. In this example, the value of
l$a remains unchanged. Expression outputs are shown in comments.

Systems that use primarily immutable objects are sometimes called pass-by-value or copy-on-modify,
while those that use mutable objects are called pass-by-reference. While technically correct, these terms
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are confusing because they imply that this is a language-level behaviour when it is actually object-level: a
language can have both mutable and immutable objects.

Code that uses immutable objects tends to be easier to reason about because effects are local. This is
a big advantage: it is easier to understand how code works, and to test (or even prove) its correctness.
The disadvantage of immutability is its lack of modularity: since we can not modify objects directly, each
function needs to return a copy of all objects that it modifies. For example, imagine we wanted to memoise
a function. Memoisation stores the results of a function so that if it is called again with the same arguments,
a cached result is returned. This is an example of the classic space-speed tradeoff; here we are trading space
(the in-memory cache) for speed. To do this without mutable objects we need an additional argument to the
function to store the cache, and to return both the result and the updated cache from the function. R code
to do this is shown in Figure 2.

slow_function <- function(x) {

Sys.sleep(2)

x ^ 2

}

system.time(slow_function(2))

system.time(slow_function(2))

slow_function_memo <- function(x, cache = list()) {

if (x %in% names(cache)) {

res <- cache[[as.character(x)]]

} else {

Sys.sleep(2)

res <- x ^ 2

cache[as.character(x)] <- res

}

list(result = res, cache = cache)

}

system.time(res <- slow_function(2))

system.time(res <- slow_function(2, res$cache))

Figure 2: Implementing memoisation without mutable objects requires that the memoised function returns both the
original result and the updated cache, and calling the function requires explicit reference to the cache.

This is unappealing because the behaviour of the function has not changed (it still returns the same inputs
for the same outputs), but its interface has. Making this change violates modularity: we need not only to
modify this function, but every function that calls it, and so on down the call tree. Tangling specification with
implementation makes modularity hard. If we have mutable state, there is no need to expose the difference
in implementation to the user, and in fact it becomes easy to write a general memoisation function, as shown
in Section 4.1.

Mutable state increases modularity, but it also adds non-local effects, which make it much harder to un-
derstand how programs work. Is it possible to enjoy the best of both worlds? van Roy and Haridi (2004,
p. 412) suggest to keep as much code as possible functional, and only use mutable state when absolutely
necessary, and when it is necessary, it is advantageous to “write stateful components so that they behave
declaratively” (van Roy and Haridi, 2004, p. 417). For example, memoisation can use mutable state inter-
nally, but not expose this implementation detail to the outside world, so reasoning about the function can be
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performed in a pure framework.
Immutable objects do not have to cause poor performance because of they must be copied whenever

they are modified. It is possible to have immutable objects with the same performance characteristics as
mutable objects (Okasaki, 1999; Kaplan, 1995). The study of how to do this efficiently is the domain of
persistent data structures (Driscoll et al., 1986). Most persistent data structures work by storing a reference
to the previous version and a list of changes. The programming language Clojure (Hickey, 2008) uses this
technique extensively. These techniques have yet to be implemented in R.

2.2 Message-passing vs generic-function methods

Object oriented programming is based around the idea of methods, functions that are selected based on the
class of their parameters. There are two fundamentally different styles of methods depending on whether
they are based around functions or objects. The function-centric style is called generic-functions (GFOO),
and the object-centric style is called message-passing (MPOO).

In GFOO, methods are based around generic functions that dispatch on the class of any (or all) of their
parameters. In R, S3 and S4 are both generic function systems, based on that of Dylan (Feinberg et al., 1997),
which in turn was inspired by the common lisp object system (CLOS) (DeMichiel and Gabriel, 1987). Figure 3
illustrates the use of generic functions to write a vehicle inspection function. Because generic functions can
dispatch on all of their arguments, it is easy to specialise the function for different types of vehicles (a general
procedure, plus specific procedures for cars and trucks), and for different types of inspectors (as well as all
other tests, the state inspector also checks the insurance). The most specific procedure is called first, and
then callNextMethod() ensures the more general methods are invoked.

In MPOO, messages are sent to objects, and the messages are interpreted by object-specific methods. This
means that the method selection is based only on the object to which the object is sent, not the parameters of
the message. Typically this object has a special appearance in the method call, usually appearing before the
name of the method/message. MPOO was used by the first object-oriented programming languages, Simula
and smalltalk, and their legacy remains today: most popular OO languages, like Java and C#, are message
passing.

There are advantages and disadvantages to each style of OO. The big advantage of the GFOO approach is
that it can choose a method based on any number of the arguments. This is particularly useful for certain
tasks. For example, the matrix package (Bates and Maechler, 2009) has 12 class of matrices to concisely
represent patterned matrices. When performing matrix multiplication it is very useful to be able to dispatch
on both matrices to take advantage of all possible optimisations. This is difficult to do with single dispatch,
although there are some workarounds, like double dispatch.

There are two small advantages of MPOO, name-spacing and nesting. MPOO is implicitly name-spaced;
because you are sending a message to an object, different objects can interpret the same message differently.
GFOO requires a global namespace that all methods have to share, and while the explicit namespace support
in R does help, it can be frustrating to discover the method name that you want has been claimed by another
package with different semantics. Another minor advantage of MPOO is the order of function composition
leads to constructs that can be read from left-to-right. Figure 4 shows an example. It is easier to read
the MPOO (imaginary syntax, not working code) because we can read from left-to-right: take the file, open
it, read the first five lines and replace spaces with dashes. Converting the GFOO syntax to English yields:
perform a text replacement on the lines read from the opened file, but just the first five, changing spaces to
dashes.

These advantages are much smaller than multiple dispatch, but they accrue more frequently. Implicit
name-spacing makes code faster to write because you don’t need to think so hard about creating globally
unique names, and the order of function composition makes it more natural (at least for speakers of European
languages) to read. While multiple dispatch solves certain problems very elegantly, it is not needed for most
tasks.
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setGeneric("inspect.vehicle",

function(v, i) {

standardGeneric("inspect.vehicle")

})

setMethod("inspect.vehicle",

signature(v = "vehicle", i = "inspector"),

function(v, i) {

look.for.rust(v)

})

setMethod("inspect.vehicle",

signature(v = "car", i = "inspector"),

function(v, i) {

callNextMethod() // perform vehicle inspection

check.seat.belts(car)

})

setMethod("inspect.vehicle",

signature(v = "truck", i = "inspector"),

function(v, i) {

callNextMethod() // perform vehicle inspection

check.cargo.attachments(v)

})

setMethod("inspect.vehicle",

signature(v = "car", i = "state.inspector"),

function(v, i) {

callNextMethod() // perform car inspection

check.insurance.car(v)

})

Figure 3: An example of S4 generic functions. Example adapted from http://www.opendylan.org/gdref/tutorial.

html.

file$open()$read_lines(1:5)$replace(" ", "-")

replace(read_lines(open(file), 1:5), " ", "-")

Figure 4: A comparison of an (imaginary) MPOO syntax (top) vs. the standard R GFOO syntax (bottom).
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2.3 Class-based vs prototype-based inheritance

There is a choice for how inheritance works in OO system: is it class-based or prototype-based? Class-based
inheritance erects a firm boundary between classes and instances. Typically classes are generated statically at
compile-time, while instances are generated dynamically at run-time. There are no inheritance relationships
between objects, only between classes. Prototype-based inheritance blurs this boundary by making it possible
for objects to inherit from other objects. This has two consequences: the distinction between class and
instance is blurred, and the objects that play the role of classes become much more dynamic.

Prototype-based inheritance is particularly well suited for exploratory statistical and scientific program-
ming when the target is not well known in advance. Instead of expending a large amount of upfront effort to
come up with a suitable class structure for the problem domain, much of which might end up to be wrong or
unnecessary, you can gradually build up interfaces as you discover them, and you are not locked down too
soon. Hofstadter (1979) calls this the prototype principle: “The most specific event can serve as a general
example of a class of events”. There is some evidence that the prototype model better models how our brain
works (Hofstadter, 1979, p. 352), building up general models from specific examples.

Notable prototype-based languages are Javascript, a popular web programming language, and Self, the
first language to experiment with prototypes (Smith and Ungar, 1995; Ungar et al., 1991; Ungar and Smith,
1991). These languages are both MPOO. Prototype-based inheritance with generic functions has been im-
plemented in Slate (Rice and Salzman, 2004; Salzman and Aldrich, 2005), and Cecil (Chambers, 1992).
Class-based systems are more common: Java, C++ and C# all use class-based inheritance. Examples of
prototype based code are shown in the next section.

3 Introduction to mutatr

The ideas of mutable state, message-passing methods and prototype-based inheritance are implemented in
a new R package, mutatr. It explores different trade offs to existing R packages for OO programming:

• It separates lexical and object scope, based on ideas from javascript.

• Mutable, multiple inheritance, using a depth-first search of inheritance graph, based on ideas from io
(Dekorte, 2005).

• Rich introspection, also based on io.

This section gives a brief introduction to the package, showing how the theoretical ideas described above
come to life in code. The fact that it is possible to use environments and S3 methods to write an alternative
OO system is a testament to the tremendous flexibility of the language.

3.1 Basic use

At the most basic level, there are only two things you need to know to use mutatr: how to add fields (methods
and variables) to an object and how to create new objects.

To create a new object, call the clone() method on the object you want to inherit from. The only object
mutatr provides is Object, so to create your first object you will use Object$clone(). This call also illustrate
hows to access object methods, like accessing a component of a list. The following example shows how you
might use mutatr to model one aspect of a dog’s behaviour.

Dog <- Object$clone()

Dog$speak <- function() cat("Woof!\n")

mina <- Dog$clone()

mina$speak()
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Note the convention in object names: objects used more like classes (i.e. to provide common methods
for other classes) start with a upper-case letter, and objects that behave more like instances start with a
lower-case letter.

To access object properties within a method, use self. The following example modifies speak to record
how many times it is called.

Dog$speak_count <- 0

Dog$speak <- function() {

self$speak_count <- self$speak_count + 1

cat("Woof!")

}

mina$speak()

mina$speak()

mina$speak_count

barkeley <- Dog$clone()

barkeley$speak_count

Because new slots are always created in the scope of the object, this method behaves correctly when we
create another dog: it has an independent speak counter. Section 4 for more examples.

When a function is assigned into a field within a mutatr object, it automatically becomes a method. Sec-
tion 3.3 describes the consequences of that action. Roughly speaking the evaluation context of the function
does not change (it can still use variables from its local environment) but it gains access to a special self
variable that refers to the object it belongs to.

3.2 How it works

Mutatr is based around a core object that implements a minimal set of methods necessary to bootstrap out
of R’s classical scoping rules: has_local_slot(), get_local_slot(), set_slot(), remove_slot(), and
clone(). For this reason, the core object is not a regular mutatr object, but is implemented with closures.

Mutatr supports dynamic multiple inheritance, so each object can have multiple parent prototypes, and
we get an inheritance graph rather than a tree. Multiple inheritance is more general than single inheritance,
but it does give rise to substantial possibilities for confusion. Figure 5 illustrates some of these. It is easy to
come up with complex inheritance structures on paper (e.g. circular) but harder to come up with examples
that arise as a result of modelling real objects. Self (Agesen et al., 2000), a prototype-based language with
multiple inheritance, uses conventions to help ensure that multiple inheritance is helpful, not harmful. All
objects are either classed as either traits or mixins. A trait has a single parent trait, and can have multiple
mixins; and a mixin has no parents. Traits act like classes, while mixins provide functionality for cross-cutting
concerns.

Figure 5: Three types of inheritance.
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Implementing inheritance on top of this core requires two sets of methods: one to modify the parents of
an object, and the other to create an iterator that will expose all ancestors without getting stuck in a endless
loop. Three methods modify parents, allowing the inheritance graph to be dynamically changed:

• append_proto: adds a new parent to the beginning of the list

• prepend_proto: adds a new parent to the beginning of the list

• remove_proto: remove an parent

The ancestor iterator performs a depth-first search of the inheritance graph, ensuring that each node
(ancestor prototype) is only visited once. This is the same model that io uses.

With these two components in place we can add has_slot() and get_slot(). The essence of get_slot()
is shown below. The code is simple: we just iterate through all the ancestors, looking for the first ancestor
that has a slot of the desired name, then return it with the correct scope. (The actual code is somewhat more
complicated for performance reasons).

This method is aliased to $.mutatr, and similarly set_slot() is aliased to $<-.mutatr(). This supports
the use of usual R subsetting functionality.

get_slot <- function(obj, name, scope = obj) {

iter <- ancestor_iterator(obj)

while(iter$has_next()) {

ancestor <- iter$get_next()

if (core(ancestor)$has_local_slot(name)) {

res <- core(ancestor)$get_local_slot(name)

res <- object_scope(res, scope)

return(res)

}

}

NULL

}

Currently, there is no way to explicit access methods of parent objects outside of normal inheritance. This
is a challenge for future work.

3.3 Scoping

There are two parallel sets of scopes that a method must be able to access: the lexical scope in which it was
defined and the object scope in which it lives. I solve this problem in the same way as javascript: by default
all access is via lexical scope, except with an explicit self reference. For example, consider the following
code.

f <- function() {

cat("Lexical: ", a, "\n")

cat("Object: ", self$a, "\n")

}

O <- Object$clone()

O$m <- f()

O$a <- 10
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a <- 5

O$f()

This illustrates that normal R lexical scoping rules apply, unless explicitly circumvented with self. The
regular scoping rules are necessary for most function calls - otherwise cat() itself would not work.

Programmatically, combining lexical-scoping and object-scoping is a hack, where a new environment
containing just the self object is inserted between the function and its parent environment, as shown in
Figure 6. This effectively makes self a special value like T or F: while you can override it with your own
value, it is not a good idea.

f global...

f global...self

Figure 6: An illustration of how the self environment is interleaved into the stack of parent environments.

The proto package (Kates and Petzoldt, 2007) takes an alternative approach to solve this problem,
requiring an additional explicit reference to self in the method argument list, in a similar way to python.
However, proto does not separate lexical and object scope so that fields defined in object scope shadow
objects defined in lexical scope..

4 Case studies

The following case studies illustrate the use of mutable objects in three problems for which they are partic-
ularly well suited. Section 4.1 shows how to create a generic memoisation function. Section 4.2 shows how
mutable objects are useful in stateful simulations, in particular how they might be useful when comparing
card counting techniques for blackjack. It also demonstrates how the separation between lexical and object
scope can be used to create “private” variables and methods. Section 4.3 pairs a mutable representation with
an object that is truly mutable object: a graphical user interface (gui).

4.1 Memoisation

Memoisation is a useful technique for avoiding excess computation. Figure 7 implements a simple cache and
wrapper that implements memoisation. I have recently used this technique to good effect in an experimental
version of the roxygen package: by memoising two functions I achieved a 10-fold speed up.

4.2 Card counting in blackjack

Mutable objects are useful in simulations of stateful systems. For example, to compare card counting strate-
gies in blackjack, it is necessary to use a stateful object to model the shoe of six decks of cards from which
the dealer draws cards. Figure 8 shows a minimal implementation of a shoe, with methods to shuffle the
deck and draw one or two cards.

This code also illustrates an useful programming technique. We can take advantage of R’s lexical scoping
rules to create private variables that can not be accessed from outside of the class, shoe, pos and draw_n.
This means that there is no way for a nefarious card counting algorithm to manipulate the shoe and show
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library(digest)

Cache <- Object$clone()$do({

init <- function() {

self$hash <- new.env(hash = TRUE, parent = emptyenv())

}

self$get <- function(key) {

get(key, env = self$hash)

}

self$set <- function(key, value) {

assign(key, value, env = self$hash)

}

self$has_key <- function(key) {

exists(key, env = self$hash)

}

})

memoise <- function(f) {

cache <- Cache$clone()

function(...) {

key <- digest(list(...))

if (cache$has_key(key)) {

cache$get(key)

} else {

value <- f(...)

cache$set(key, value)

value

}

}

}

Figure 7: Basic memoisation, using the digest package to generate a string key for any list of arguments. The do

function is a convenient shortcut for defining multiple methods at once.
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library(mutatr)

Shoe <- Object$clone()$do({

shoe <- NA

pos <- 0

draw_n <- function(n) {

cards <- shoe[pos + seq_len(n)]

pos <<- pos + n

cards

}

self$shuffle <- function() {

shoe <<- shuffle_decks(6)

pos <<- 0

}

self$draw_one <- function() draw_n(1)

self$draw_two <- function() draw_n(1)

})

Figure 8: Modelling a deck of cards with a mutable object.

artificially favourable results. This is somewhat of an academic concern in this case, but the ability to hide
internal details is useful for making stable interfaces.

4.3 Graphical user interfaces

Mutable objects are particularly well suited to problems where there really is one true underlying object,
for example, GUIs and interactive graphics. Figure 9 shows the creation of a simple gui using mutatrGui,
an experimental package that provides a mutable object interface to gwidgets (Verzani, 2007). There are
couple of particularly nice things about this approach: the hierarchy of object names and indenting matches
the gui hierarchy, and we don’t have to worry about polluting the global namespace, so it is easier to give
gui components descriptive names.

Smith (1995) point out that prototype inheritance is a natural fit to dialog boxes. All dialog boxes in
application have something in common, but they are largely unique. To model these dialogs in a class-based
environment requires creating a class for each dialog - rather a heavy requirement when most classes will
have only a single instance. Self and XLISP-STAT (Tierney, 1990) also provided GUIs within a prototype-
based environment.

While it is possible to design GUIs and interactive graphics in a purely functional setting (Elliott and
Hudak, 1997; Courtney and Elliott, 2001), it requires a rather different way of thinking about the world,
and rather esoteric mathematical constructs (monads and monoids). Web pages are also amenable functional
implementation as they are typically stateless, depending only on the URL and query parameters.

5 Conclusions

This paper has discussed three important concerns when designing an OO system: mutable vs. immutable,
generic functions vs. message passing, and classes vs. prototypes. Building on these ideas I introduced a
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w <- Window$clone()$do({

self$title <- "Window with buttons"

self$value <- NA

self$buttons <- Group$clone("v")$do({

self$add(Label$clone("These are some buttons"))

self$one <- Button$clone("One")

self$add_space(10)

self$two <- Button$clone("Two")

self$add_spring()

})

self$status <- StatusBar$clone()

})

w$buttons$one$add_handler(function(...) w$value <- 1)

w$buttons$two$add_handler(function(...) w$value <- 2)

Figure 9: A simple gui, made with mutable objects.

new OO package for R, that has mutable state and prototype-based inheritance, and discussed some of the
implementation issues. Three case studies showed how these mutable objects are useful for memoisation,
stateful simulations and for creating graphical user interfaces.

Future plans for mutatr centre around the need to embed it more easily in the R ecosystem. Chiefly,
this consists of coming up with a toolset that makes it easy to document an object’s methods. I am looking
into adapting the roxygen package (Danenberg and Eugster, 2008) to meet this need. Another important is
performance. How much do the unusual function call semantics reduce performance and how can this be
mitigated?
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