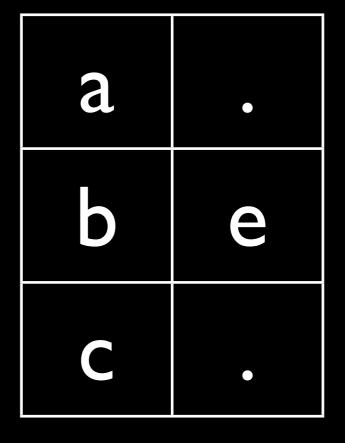
# Efficiently storing and reshaping large data

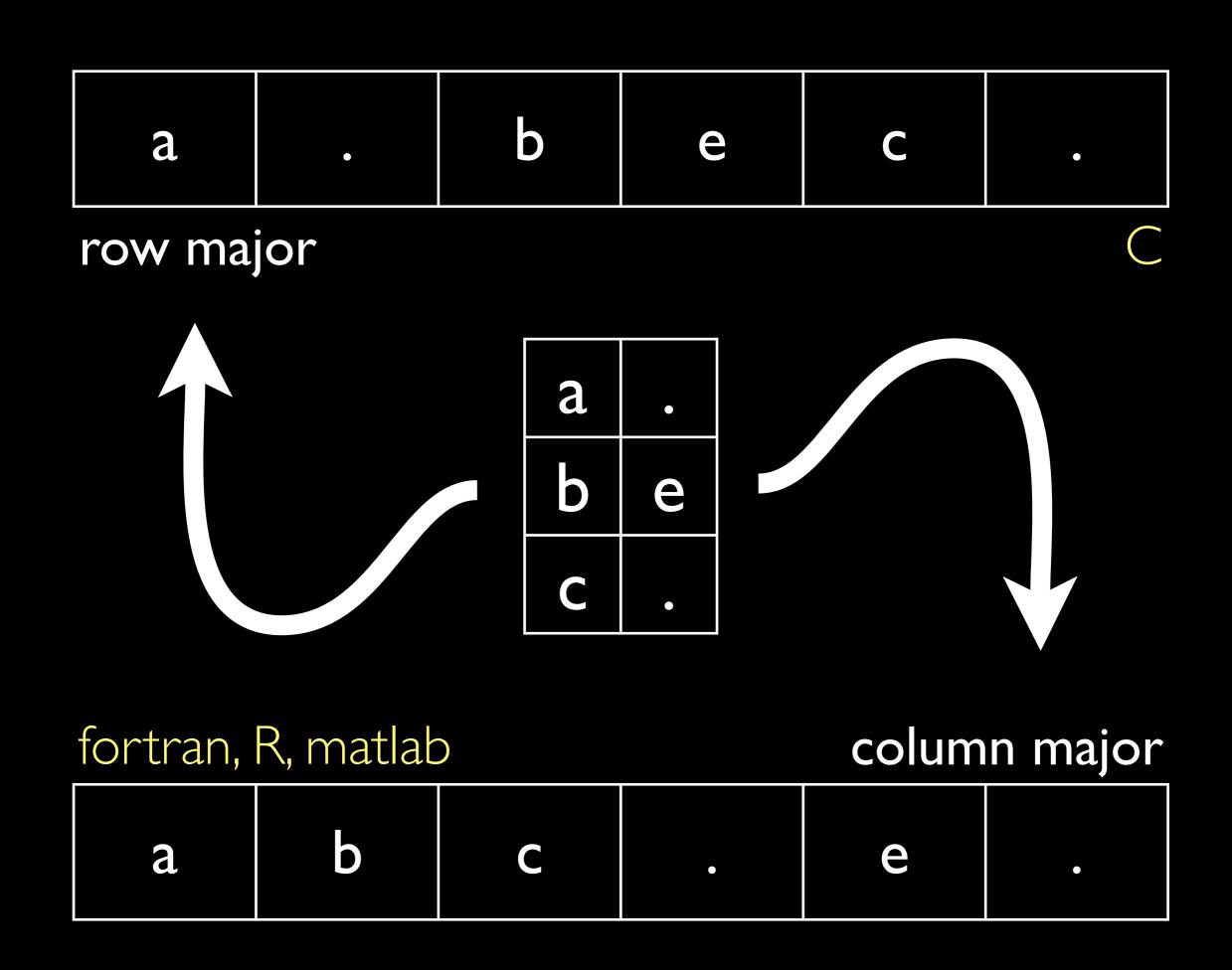
Hadley Wickham Rice University

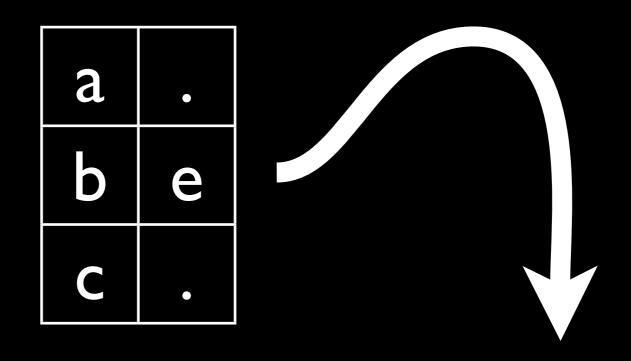
#### Motivation


|        | Identifier                  | Measured                 |
|--------|-----------------------------|--------------------------|
| aka    | dimension, key, index of rv | measure, random variable |
| values | fixed by design             | measured in expt         |
| type   | consecutive integers (wlog) | anything                 |

# Storage

| X | y | V |
|---|---|---|
| 0 | 0 | a |
| 0 |   | b |
| 0 | 2 | С |
|   |   | е |


data frame


| X | y | V |
|---|---|---|
| 0 | 0 | a |
| 0 |   | b |
| 0 | 2 | С |
|   |   | е |



data frame

2d array





#### column major

| a | b | C | • | e | • |
|---|---|---|---|---|---|
|---|---|---|---|---|---|

| i | X | У | V |
|---|---|---|---|
| 0 | 0 | 0 | a |
| ı | 0 |   | b |
| 2 | 0 | 2 | С |
| 3 |   | 0 | • |
| 4 |   |   | е |
| 5 |   | 2 | • |

$$x = i // 3$$
$$y = i - 3 \cdot x$$

en.wikipedia.org/wiki/Row-major\_order

#### Storage

- Assuming no missing values
- Data frame =  $(p_i + p_m) \cdot n$
- Matrix =  $p_m \cdot n$
- Data frame excess =  $I + p_i / p_m$

### Missing values

- Missing values make a big difference.
- Id variables: Structural missings from experimental design. If no crossing then data frame only requires max(m<sub>1</sub>, m<sub>2</sub>, m<sub>3</sub>) but matrix requires m<sub>1</sub>·m<sub>2</sub>·m<sub>3</sub>
- Measured variables: x% MCAR allows data frame to drop x<sup>pi</sup> rows on average

|                | Data frame     | Matrix          |
|----------------|----------------|-----------------|
| Missings       | implicit       | explicit        |
| ld variables   | explicit       | implicit        |
| Best for       | nested<br>data | crossed<br>data |
| Dimensionality | 2              | n (I)           |
| Memory         | scattered      | contiguous      |

| var   | lat   | long   | time | value |
|-------|-------|--------|------|-------|
| ozone | -21.2 | -113.8 |      | 260   |
| ozone | -18.7 | -113.8 |      | 258   |
| ozone | -16.2 | -113.8 |      | 258   |
|       |       |        |      |       |
| 7     | 24    | 24     | 72   | 232—  |

209,304 values: data frame: 11.3 meg, matrices: 2.2 meg

# Reshaping

### Reshaping

- Many possible forms of data useful for different types of data analysis
- Most statistical algorithms compare columns of data frame or 2d matrix
- To reshape: construct new ordering of values, then set dimensions

#### Output

- Two extremes:
  - $p_i$ -d matrix =  $m_1$  ~  $m_2$  ~  $m_3$  ~  $m_4$
  - $n \times p_i$  data frame =  $m_1 + m_2 + m_3 + m_4$
- Many possible (useful) intermediate forms in the middle
  - $m_3 + m_2 \sim m_1 + m_4$  etc
- How do we go from one form to another?

### Reshaping

- Turns out to be fairly simple we just need to work out the right linear ordering
- For each output dimension, create a single new variable
- Create overall order from individual dimensions, filling in with missings as needed

| a | Ь | С | val |
|---|---|---|-----|
| 0 | 0 | 0 | 5   |
|   | 0 | 0 | 10  |
| 2 | 0 |   | 15  |
| 0 |   |   | 20  |
|   |   | 2 | 25  |
| 2 |   | 2 | 30  |

c + a ~ b

 $c + 3 \cdot a$ 

| C | a | dl |
|---|---|----|
| 0 | 0 | 0  |
| 0 |   | 3  |
|   | 2 | 7  |
|   | 0 | I  |
| 2 |   | 5  |
| 2 | 2 | 8  |

| Ь | d2 |  |
|---|----|--|
| 0 | 0  |  |
| 0 | 0  |  |
| 0 | 0  |  |
|   |    |  |
|   |    |  |
|   |    |  |

#### $d_1 + 8 \cdot d_2$

| dı | d <sub>2</sub> | OV | val |
|----|----------------|----|-----|
| 0  | 0              | 0  | 5   |
| 3  | 0              | 3  | 10  |
| 7  | 0              | 7  | 15  |
| I  | I              | 9  | 20  |
| 5  | I              | 12 | 25  |
| 8  |                | 16 | 30  |



|   | 0  | 1  |
|---|----|----|
| 0 | 5  | •  |
|   | •  | 20 |
| 2 | •  | •  |
| 3 | 10 | •  |
| 4 | •  | •  |
| 5 | •  | 25 |
| 6 | •  | •  |
| 7 | 15 | •  |
| 8 | •  | 30 |

### Aggregation

- The process for aggregation is much the same, but the overall value will no longer be unique
- Use aggregation function to collapse to a single number

#### Performance

- For very large data, often just want to work on a subset
- Need on-disk storage and efficient access
  - Sorting
  - RDMS (but usually don't update)
  - Compressed bitmap indices: http://sdm.lbl.gov/fastbit/

## ASA Data



Have you ever been stuck in an airport because your flight was delayed or cancelled? Do you think you could have predicted it if you'd had more data?

The 2009 ASA data expo challenges you to explore and graphically summarise airline on-time performance data collected by the DOT. Records span over 20 years and include almost 120 million commercial flights flown throughout the US. For more information check out the data expowebsite.

http://stat-computing.org/dataexpo/2009