
AN INTRODUCTION TO RGGOBI

An introduction to rggobi
Hadley Wickham, Michael Lawrence,
Duncan Temple Lang, Deborah F Swayne

Introduction

The rggobi (Temple Lang and Swayne, 2001) pack-
age provides a command-line interface to GGobi, an
interactive and dynamic graphics package. Rggobi
complements GGobi’s graphical user interface by en-
abling fluid transitions between analysis and explo-
ration and by automating common tasks. It builds on
the first version of rggobi to provide a more robust
and user-friendly interface. In this article, we show
how to use ggobi and offer some examples of the in-
sights that can be gained by using a combination of
analysis and visualisation.

This article assumes some familiarity with
GGobi. A great deal of documentation, both
introductory and advanced, is available on the
GGobi web site, http://www.ggobi.org; newcom-
ers to GGobi might find the demos at ggobi.org/
docs especially helpful. The software is there
as well, both source and executables for several
platforms. Once you have installed GGobi, you
can install rggobi and its dependencies using in-
stall.packages("rggobi", dep=T).

This article introduces the three main compo-
nents of rggobi, with examples of their use in com-
mon tasks:

• Getting data into and out of GGobi.

• Modifying observation-level attributes (“auto-
matic brushing”).

• Basic plot control.

We will also discuss some advanced techniques such
as creating animations with GGobi, the use of edges,
and analysing longitudinal data. Finally, a case study
shows how to use rggobi to create a visualisation for
a statistical algorithm: manova.

Data

Getting data from R into GGobi is easy:
g <- ggobi(mtcars). This creates a GGobi object
called g. Getting data out isn’t much harder: Just
index that GGobi object by position (g[[1]]) or by
name (g[["mtcars"]] or g$mtcars). These return
GGobiData objects which are linked to the data in
GGobi. They act just like regular data frames, except
that changes are synchronised with the data in the
corresponding GGobi. You can get a static copy of
the data using as.data.frame.

Once you have your data in GGobi, it’s easy to
do something that was hard before: find multivariate

outliers. It is customary to look at uni- or bivariate
plots to look for uni- or bivariate outliers, but higher-
dimensional outliers may go unnoticed. Looking for
these outliers is easy to do with the tour. Open your
data with GGobi, change to the tour view, and se-
lect all the variables. Watch the tour and look for
points that are far away or move differently from the
others—these are outliers.

Adding more data sets to an open GGobi is also
easy: g$mtcars2 <- mtcars will add another data
set named “mtcars2”. You can load any file type
that GGobi recognises by passing the path to that file.
In conjunction with ggobi_find_file, which locates
files in the GGobi installation directory, this makes it
easy to load GGobi sample data. This example loads
the olive oils data set included with GGobi:

library(rggobi)
ggobi(ggobi_find_file("data", "olive.csv"))

Modifying observation-level
attributes, or “automatic brushing”

Brushing is typically thought of as an operation per-
formed in a graphical user interface. In GGobi, it
refers to changing the colour and symbol (glyph type
and size) of points. It is typically performed in a
linked environment, in which changes propagate to
every plot in which the brushed observations are
displayed. in GGobi, brushing includes shadowing,
where points sit in the background and have less vi-
sual impact, and exclusion, where points are com-
pleted excluded from the plot. Using rggobi, brush-
ing can be performed from the command line; we
think of this as “automatic brushing.” The following
functions are available:

• change glyph colour with glyph_colour (or
glyph_color)

• change glyph size with glyph_size

• change glyph type with glyph_type

• shadow and unshadow points with shadowed

• exclude and include points with excluded

Each of these functions can be used to get or set
the current values for the specified GGobiData. The
“getters” are useful for retrieving information that
you have created while brushing in GGobi, and the
“setters” can be used to change the appearance of
points based on model information, or to create an-
imations. They can also be used to store, and then
later recreate, the results of a complicated sequence
of brushing steps.

This example demonstrates the use of
glyph_colour to show the results of clustering the

1

http://www.ggobi.org
ggobi.org/docs
ggobi.org/docs

DISPLAYS AN INTRODUCTION TO RGGOBI

infamous Iris data using hierachical clustering. Us-
ing GGobi allows us to investigate the clustering in
the original dimensions of the data. The graphic
shows a single projection from the grand tour.

g <- ggobi(iris)
clustering <- hclust(dist(iris[,1:4]),
method="average")

glyph_colour(g[1]) <- cuttree(clustering, 3)

Another function, selected, returns a logical vec-
tor indicating whether each point is currently en-
closed by the brush. This could be used to further
explore interesting or unusual points.

Displays

A GGobiDisplay represents a window containing
one or more related plots. With rggobi you can cre-
ate new displays, change the projection of an existing
plot, set the mode which determines the interactions
available in a display, or select a different set of vari-
ables to plot.

To retrieve a list of displays, use the displays
function. To create a new display, use the display
method of a GGobiData object. You can specify the
plot type (the default is a bivariate scatterplot, called
“XY Plot”) and variables to include. For example:

g <- ggobi(mtcars)
display(g[1], vars=list(X=4, Y=5))
display(g[1], vars=list(X="drat", Y="hp"))
display(g[1], "Parallel Coordinates Display")
display(g[1], "2D Tour")

The following display types are available in
GGobi (all are described in the manual, available
from ggobi.org/docs):

Name Variables
1D Plot 1 X
XY Plot 1 X, 1 Y
1D Tour n X
Rotation 1 X, 1 Y, 1 Z
2D Tour n X
2x1D Tour n X, n Y
Scatterplot Matrix n X
Parallel Coordinates Display n X
Time Series 1 X, n Y
Barchart 1 X

After creating a plot you can get and set the dis-
played variables using the variable and variable<-
methods. Because of the range of plot types in
GGobi, variables should be specified as a list of one
or more named vectors. All displays require an X vec-
tor, and some require Y and even Z vectors, as speci-
fied in the above table.

g <- ggobi(mtcars)
d <- display(g[1],
"Parallel Coordinates Display")

variables(d)
variables(d) <- list(X=8:6)
variables(d) <- list(X=8:1)
variables(d)

A function which saves the contents of
a GGobi display to a file on disk, is called
ggobi_display_save_picture. This is what we
used to create the images in this document. This
creates an exact (raster) copy of the GGobi display.
If you want to create publication quality graphics
from GGobi, have a look at the DescribeDisplay
plugin and package at http://www.ggobi.org/
describe-display. These create R versions of
GGobi plots.

To support the construction of custom interactive
graphics applications, rggobi enables the embedding
of GGobi displays in graphical user interfaces (GUIs)
based on the RGtk2 package. If embed = TRUE is
passed to the display method, the display is not im-
mediately shown on the screen but is returned to R as
a GtkWidget object suitable for use with RGtk2. Mul-
tiple displays of different types may be combined
with other widgets to form a cohesive GUI designed
for a particular data analysis task.

Animation

Any changes that you make to the GGobiData objects
are updated in GGobi immediately, so you can eas-
ily create animations. This example scrolls through a
long time series:

df <- data.frame(
x=1:2000,
y=sin(1:2000 * pi/20) + runif(2000, max=0.5)

)

2

ggobi.org/docs
http://www.ggobi.org/describe-display
http://www.ggobi.org/describe-display

EDGE DATA AN INTRODUCTION TO RGGOBI

g <- ggobi_longitudinal(df[1:100,])

df_g <- g[1]
for(i in 1:1901) {
df_g[, 2] <- df[i:(i + 99), 2]

}

Edge data

In GGobi, an edge data set is treated as a special
type of dataset in which a record describes an edge
– which may still be associated with an n-tuple of
data. They can be used to represent many differ-
entent types of data, such as distances between ob-
servations, social relationships, or biological path-
ways.

In this example we explore marital and business
relationships between Florentine families in the 15th
century. The data comes from the ergm (social net-
working analysis) package (Handcock et al., 2003), in
the format provided by the network package (Butts
et al., July 26, 2008).

install.packages(c("network", "ergm"))
library(ergm)
data(florentine)

flo <- data.frame(
priorates = get.vertex.attribute(
flobusiness, "priorates"

),
wealth = get.vertex.attribute(
flobusiness, "wealth"

)
)

families <- network.vertex.names(flobusiness)
rownames(flo) <- families

edge_data <- function(net) {
edges <- as.matrix.network(
net,
matrix.type="edgelist"

)
matrix(families[edges], ncol=2)

}

g <- ggobi(flo)
edges(g) <- edge_data(flomarriage)
edges(g) <- edge_data(flobusiness)

This example has two sets of edges because some
pairs of families have marital relationships but not
business relationships, and vice versa. We can use
the edges menu in GGobi to change between the two
edge sets and compare the relationship patterns they
reveal.

How is this stored in GGobi? An edge dataset
records the names of the source and destination ob-
servations for each edge. You can convert a regular
dataset into an edge dataset with the edges function.
This takes a matrix with two columns, source and
destination names, with a row for each edge obser-
vation. Typically, you will need to add a new data
frame with number of rows equal to the number of
edges you want to add.

Longitudinal data

A special case of data with edges is time series or
longitudinal data, in which observations adjacent in
time are connected with a line. Rggobi provides a
convenient function for creating edge sets for longi-
tudinal data, ggobi_longitudinal, that links obser-
vations in sequential time order.

This example uses the stormtracks data in-
cluded in rggobi. The first argument is the dataset,
the second is the variable specifying the time compo-
nent, and the third is the variable that distinguishes
the observations.

ggobi_longitudinal(stormtracks, seasday, id)

For regular time series data (already in
order, with no grouping variables), just use
ggobi_longitudinal with no other arguments.

3

CASE STUDY AN INTRODUCTION TO RGGOBI

Case study

This case study explores using rggobi to add model
information to data; here will add confidence ellip-
soids around the means so we can perform a graphi-
cal manova.

The first (and most complicated) step is to gener-
ate the confidence ellipsoids. The ellipse function
does this. First we generate random points on the
surface of sphere by drawing npoints from a random
normal distribution and standardising each dimen-
sion. This sphere is then skewed to match the desired
variance-covariance matrix, and its is size adjusted to
give the appropriate cl-level confidence ellipsoid. Fi-
nally, the ellipsoid is translated to match the column
locations.

conf.ellipse <- function(data, npoints=1000,
cl=0.95, mean=colMeans(data), cov=var(data),
n=nrow(data)

) {
norm.vec <- function(x) x / sqrt(sum(x^2))

p <- length(mean)
ev <- eigen(cov)

normsamp <- matrix(rnorm(npoints*p), ncol=p)
sphere <- t(apply(normsamp, 1, norm.vec))

ellipse <- sphere %*%
diag(sqrt(ev$values)) %*% t(ev$vectors)

conf.region <- ellipse * sqrt(p * (n-1) *
qf(cl, p, n-p) / (n * (n-p)))

if (!missing(data))
colnames(ellipse) <- colnames(data)

conf.region + rep(mean, each=npoints)
}

This function can be called with a data matrix, or
with the sufficient statistics (mean, covariance ma-
trix, and number of points). We can look at the out-
put with ggobi:

ggobi(conf.ellipse(
mean=c(0,0), cov=diag(2), n = 100))

cv <- matrix(c(1,0.15,0.25,1),
ncol=2, n = 100)

ggobi(conf.ellipse(
mean=c(1,2), cov=cv, n = 100))

mean <- c(0,0,1,2)
ggobi(conf.ellipse(
mean=mean, cov=diag(4), n = 100))

In the next step, we will need to take the original
data and supplement it with the generated ellipsoid:

manovaci <- function(data, cl=0.95) {

dm <- data.matrix(data)
ellipse <- as.data.frame(
conf.ellipse(dm, n=1000, cl=cl)

)

both <- rbind(data, ellipse)
both$SIM <- factor(
rep(c(FALSE, TRUE), c(nrow(data), 1000))

)

both
}
ggobi(manovaci(matrix(rnorm(30), ncol=3)))

Finally, we create a method to break a dataset into
groups based on a categorical variable and compute
the mean confidence ellipsoid for each group. We
then use the automatic brushing functions to make
the ellipsoid distinct and to paint each group a dif-
ferent colour. Here we use 68% confidence ellipsoids
so that non-overlapping ellipsoids are likely to have
significantly different means.

ggobi_manova <- function(data, catvar, cl=0.68) {
each <- split(data, catvar)
cis <- lapply(each, manovaci, cl=cl)

df <- as.data.frame(do.call(rbind, cis))
df$var <- factor(rep(
names(cis), sapply(cis, nrow)

))

g <- ggobi(df)
glyph_type(g[1]) <- c(6,1)[df$SIM]
glyph_colour(g[1]) <- df$var
invisible(g)

}

These images show a graphical manova. You can
see that in some projections the means overlap, but
in others they do not.

Conclusion

GGobi is designed for data exploration, and its in-
tegration with R through rggobi allows a seamless
workflow between analysis and exploration. Much
of the potential of rggobi has yet to be realized,
but some ideas are demonstrated in the classifly

4

BIBLIOGRAPHY AN INTRODUCTION TO RGGOBI

package (Wickham, 2007), which visualises high-
dimensional classification boundaries. We are also
keen to hear about your work—if you develop a
package using rggobi please let us know so we can
highlight your work on the GGobi homepage.

We are currently working on the infrastructure
behind GGobi and rggobi to allow greater control
from within R. The next generation of rggobi will
offer a direct low-level binding to the public inter-
face of every GGobi module. This will coexist with
the high-level interface presented in this paper. We
are also working on consistently generating events
in GGobi so that you will be able respond to events
of interest from your R code. Together with the
RGtk2 package (Lawrence and Temple Lang, 2007),
this should allow the development of custom inter-
active graphics applications for specific tasks, writ-
ten purely with high-level R code.

Acknowledgements

This work was supported by National Science Foun-
dation grant DMS0706949. The ellipse example is
taken, with permission, from Professor Di Cook’s
notes for multivariate analysis.

Bibliography

C. T. Butts, M. S. Handcock, and D. R. Hunter. net-
work: Classes for Relational Data. Irvine, CA, July
26, 2008. URL http://statnet.org/. R package
version 1.4-1.

M. S. Handcock, D. R. Hunter, C. T. Butts, S. M.
Goodreau, and M. Morris. ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Mod-
els for Networks. Seattle, WA, 2003. URL http://
CRAN.R-project.org/package=ergm. Version 2.1 .
Project home page at http://statnetproject.org.

M. Lawrence and D. Temple Lang. RGtk2: R bind-
ings for Gtk 2.8.0 and above, 2007. URL http://www.
ggobi.org/rgtk2,http://www.omegahat.org. R
package version 2.12.1.

D. Temple Lang and D. F. Swayne. GGobi meets R:
an extensible environment for interactive dynamic
data visualization. In Proceedings of the 2nd Interna-
tional Workshop on Distributed Statistical Computing,
2001.

H. Wickham. classifly: Explore classification models in
high dimensions, 2007. URL http://had.co.nz/
classifly. R package version 0.2.3.

5

http://statnet.org/
http://CRAN.R-project.org/package=ergm
http://CRAN.R-project.org/package=ergm
http://www.ggobi.org/rgtk2, http://www.omegahat.org
http://www.ggobi.org/rgtk2, http://www.omegahat.org
http://had.co.nz/classifly
http://had.co.nz/classifly

	An introduction to rggobi
	Introduction
	Data
	Modifying observation-level attributes, or ``automatic brushing''
	Displays
	Animation
	Edge data
	Longitudinal data

	Case study
	Conclusion

