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Abstract

This paper proposes a scientific model to explain the data analysis process. We argue that
data analysis is primarily a procedure to build understanding and as such, it dovetails with the
cognitive processes of the human mind. Data analysis tasks closely resemble the cognitive pro-
cess known as sensemaking. We demonstrate how data analysis is a sensemaking task adapted
to use quantitative data. This identification highlights a universal structure within data analy-
sis activities and provides a foundation for a theory of data analysis. The competing tensions
of cognitive compatibility and scientific rigor create a series of problems that characterize the
data analysis process. These problems form a useful organizing model for the data analysis task
while allowing methods to remain flexible and situation dependent. The insights of this model
are especially helpful for consultants, applied statisticians, and teachers of data analysis.

1 Introduction

This paper proposes a scientific model to explain the data analysis process, which attempts
to create understanding from data. Data analysis tasks closely resemble the cognitive process
known as sensemaking. We demonstrate how data analysis is a sensemaking task adapted to
use quantitative data. This identification highlights a universal structure within data analysis
activities and provides a foundation for a theory of data analysis. The proposed view extends
existing models of data analysis, particularly those that describe data analysis as a sequential
process (Tukey, 1962; Tukey and Wilk, 1966; Box, 1976; Wild, 1994; Chatfield, 1995; Wild
and Pfannkuch, 1999; Cook and Swayne, 2007). The paper follows the suggestion of Mallows
and Walley (1980) to build on insights from psychology and the examples of Lakoff and Núñez
(1997) and Lakoff and Núñez (2000), who documented the influence of cognitive mechanisms
on mathematics. The paper was motivated by the authors’ need to find criteria on which to
compare and optimize the usefulness of data analysis tools; however, the paper’s discussion is
relevant to all users of data analysis techniques, such as consultants, applied statisticians, and
teachers of data analysis.

The paper is organized as follows. Section 2 defines data analysis and explains the shortcom-
ings of the current treatment of data analysis in statistics. Section 3 examines the relationship
between cognitive science and data analysis. It outlines areas of cognitive science research that
are relevant to the data analysis process, such as mental representations of knowledge, the
sensemaking process, and the use of external cognitive tools to complete sensemaking tasks.
Section 4 identifies how the use of precise, measured data disrupts the sensemaking process. It
then describes the adaptations to general sensemaking that measured data require. Section 5
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proposes that data analysis is a sensemaking task adapted to the use of measured data. This pro-
vides a theoretic model of data analysis that explains existing descriptions of the data analysis
process. In Section 6 we examine a prediction of this model: data analysis inherits the known
shortcomings of sensemaking. We examine two of these shortcomings with case studies of well
known data analyses. These shortcomings include the tendency to retain false schemas and the
inability of sensemaking to prove its conclusions. We conclude by discussing the usefulness of
the cognitive model of data analysis as a guiding theory for data analysis.

2 A theory of data analysis

Data analysis is the investigative process used to extract knowledge, information, and insights
about reality by examining data. Common data analysis activities include specifying a hypoth-
esis, collecting data relevant to a problem, modelling data with quantitative methods, and in-
terpreting quantitative findings. This process relies on statistics, a field with useful methods for
specific data analysis tasks, but has an applied focus; data analysts focus less on the properties
of a method and more on the connections between the data, the method, its results, and real-
ity. Data analysis is sometimes referred to as “applied statistics” (Mallows, 1998) or the “wider
view” of statistics (Wild, 1994), but we prefer the term data analysis because it does not suggest
that statistics is the only tool to be applied when analyzing data.

Data analysis is a widely used technique that is relevant to many fields. This relevance
has increased sharply in the past decades as data has become more ubiquitous, more complex,
and more voluminous. Large data sets, such as online customer review ratings, social network
connections, and mappings of the human genome, promise rewarding insights but overwhelm
past methods of analysis. The result is a “data deluge” (Hey and Trefethen, 2003) where current
data sets can far exceed scientists’ capacity to understand them. Despite this difficulty, the
rewards of understanding data are so promising that data analysis has been labelled the sexiest
field of the next decade (Varian, 2009).

Future advancements in data analysis will be welcomed by the scientific community, but
progress may be limited by the currently sparse theoretical foundations. Little theory exists to
explain the mechanisms of data analysis. By theory, we mean a conceptual model that syn-
thesizes relevant information, makes predictions, and provides a framework for understanding
data analysis. This definition is more pragmatic than formal: a useful theory of data analysis
would help analysts understand what data analysis is, what its goals are, how it achieves these
goals, and why it fails when it falls short. It should go beyond description to explain how the
different parts of a data analysis, such as experimental design, visualization, hypothesis testing,
and computing relate to each other. Finally, a theory of data analysis should allow analysts to
predict the success or failure of possible data analysis methods.

It is hard to prove such a theory does not exist, but Unwin (2001) points out that there are
few texts and little theory to guide a data analysis. Similar concerns have been expressed by
Mallows and Walley (1980), Breiman (1985), Wild (1994), Huber (1997), Velleman (1997),
Mallows (1998), Wild and Pfannkuch (1999), Viertl (2002), Mallows (2006), Cobb (2007),
Huber (2011) and in the discussion of Breiman (2001). Huber (1997) identifies one reason for
the lack of data analysis theory: techniques are developed by researchers who work with data
in many different fields. Often knowledge of the technique remains localized to that field. As a
result, data analysis ideas have been balkanized across the fields of statistics, computer science,
economics, psychology, chemistry, and other fields that proceed by collecting and interpreting
data. The subject matter of data analysis is also hard to generalize. The methods of each analysis
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must be flexible enough to address the situation in which it is applied. This malleability resists a
top-down description and led Unwin (2001) to suggest a bottom-up pattern language to stand
in for data analysis theory.

A well defined theory of data analysis would provide many benefits. First, it would facilitate
the development of better techniques. In many fields, advancements accrue through the exten-
sion and development of theories (Unwin, 2001). Advancements in data analysis techniques
may lead to many potential rewards. The areas of applications for data analysis have developed
more in recent decades than they have during any previous period in the history of statistics
(Breiman, 2001). Despite this, many statistics courses still teach methods typical of the first half
of the 20th century, an era characterized by smaller data sets and no computers (Cobb, 2007).
The development of theory could hasten the speed with which data fields adapt to emerging
challenges. A theory of data analysis may also curtail the development of bad techniques. Tech-
nology and large data sets do not guarantee useful results. Freedman (2009) argues that “many
new techniques constitute not progress but regress” because they rely on technical sophistica-
tion instead of realistic assumptions. A better understanding of data analysis will help ground
future innovations to sound practice.

A theory of data analysis will also improve the education of future analysts. Statistics cur-
ricula have been criticized for teaching data analysis techniques without teaching how or why
statisticians should use them (Velleman, 1997). This undermines students’ attempts to learn. As
Wild and Pfannkuch (1999) explain “the cornerstone of teaching in any area is the development
of a theoretical structure with which to make sense of experience, to learn from it and to transfer
insights to others.” The lack of data analysis theory means that little structure exists with which
to teach statistical thinking. As a result, some graduates from statistics programs have been
poorly trained for their profession; they know the technical details of statistical methods but
must undertake an on-the-job apprenticeship to learn how to apply them (Breiman, 1985; Mal-
lows, 1998). The focus on technique also fails non-statisticians, who are the primary consumers
of introductory statistics courses. Without a grasp of statistical thinking, non-statisticians are
less likely to recognize the need for a trained statistician and therefore less likely to hire one
(Wild, 1994).

A theory of data analysis may also benefit the field of statistics by providing unity and di-
rection. At the end of his 1997 assessment of statistics, Huber predicted that statistics would
dissolve as a field unless statisticians replaced their focus on techniques with a focus on “meta-
methods” and “meta-statistics” (Huber, 1997). Three years later in 2000, a panel on data anal-
ysis called for statistics to evolve into a data science organized by a general theory of data
analysis (Viertl, 2002). These conclusions echo Tukey’s argument that statistics should be “de-
fined in terms of a set of problems (as are most fields) rather than a set of tools, namely those
problems that pertain to data” (Tukey, 1962). A theory of data analysis would offer a unifying
theme for statistics and its applications. It would also offer a common language that would
promote collaboration by analysts in various fields.

Finally, a theory of data analysis would improve data analysis practice. A theory would aid
practitioners because theoretical concerns guide practice (Gelman and Shalizi, 2010). Theory
also improves practice; people problem solve more successfully when they “have suitably struc-
tured frameworks” to draw upon (Pea, 1987; Resnick, 1988).

Where should we look for such a theory? Many published papers involve a data analysis.
But as Mallows and Walley (1980), Cox (2001), and Mallows (2006) point out, most studies do
not provide a detailed description of the analysis involved. Instead, they focus on results and
implications. We could narrow our focus to statistics and computer science; both fields develop
tools to analyze data. However, statistics articles usually focus on the mathematical properties
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of individual techniques, while computer science articles focus on algorithmic efficiency. As a
result, little research deals explicitly with the data analysis process. We propose an alternative
source for data analysis insights: cognitive science.

3 The role of cognition in data analysis

Cognitive science offers a way to understand data analysis at a theoretic level. Concerns of
cognitive science may seem far from the field of statistics, but they have precedent in the early
literature of exploratory data analysis. Tukey and Wilk (1966) highlight the role of cognitive
processes in their initial descriptions of EDA (emphasis added): “The basic general intent of
data analysis is simply stated: to seek through a body of data for interesting relationships and
information and to exhibit the results in such a way as to make them recognizable to the data
analyzer” (emphasis added). And again, “...at all stages of data analysis the nature and detail of
output, both actual and potential, need to be matched to the capabilities of the people who use and
want it” (emphasis added.) Cognitive concerns also appear in recommendations for improving
data analysis. Tukey (1962) suggested that “those who try may even find new [data analysis]
techniques evolving ... from studies of the nature of ‘intuitive generalization.’” Mallows and
Walley (1980) list psychology as one of four areas likely to support a theory of data analysis.

Cognitive science also addresses a commonality of all data analyses. Data analyses rely
on the mind’s ability to learn, analyze, and understand. Each analysis attempts to educate
an observer about some aspect of reality. Usually, this requires data to be manipulated and
preprocessed, but the end result of these efforts must be a knowledge product that can be
interpreted by the human mind. An analysis cannot be useful if it fails to provide this. Even
“black box” analyses, which may rely on methods that are incomprehensible to the analyst, must
produce a result that the analyst can assign meaning to. If they do not, they will not be useful.
This last step of assigning meaning is not a statistical or computational step, but a cognitive
one. In this way, each data analysis is part of a larger, cognitive task. The success of each data
analysis depends on its ability to interact with this cognitive process.

This alone is good reason for data analysts to learn about cognition. However, cognitive
processes also shed insights on the preprocessing stages of a data analysis; mental processes
closely parallel the preprocessing stages of data analyses. Moreover, untrained analysts can and
do “analyze” data with only their natural mental abilities. The mind performs its own data
analysis-like process to create detailed understandings of reality from bits of sensory input. In
this section, we examine these mental processes. In Sections 4 and 5 we argue that data analysis
is a specific extension of a mental process known as sensemaking.

3.1 Schemas and sensemaking

Studies suggest that the average person can only hold two to six pieces of information in their
attention at once (Cowan, 2000). Yet people are able to use this finite power to develop detailed
understandings of reality, which is infinitely complex. The mind builds this understanding in a
process that is similar to many descriptions of data analysis. The mind creates and manages
internal cognitive structures that represent aspects of external reality. These structures consists
of mental models and their relationships (Rumelhart and Ortony, 1976; Carley and Palmquist,
1992; Jonassen and Henning, 1996). Mental models have been studied under a number of dif-
ferent names. Examples include frames (Goffman, 1974; Minsky, 1975; Rudolph, 2003; Smith
et al., 1986; Klein et al., 2003), scripts (Schank and Abelson, 1977), prototypes (Rosch and
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Mervis, 1975; Rosch, 1977; Smith, 1978) and schemas (Bartlett, 1932; Neisser, 1976; Piaget
and Cook, 1952). A schema is a mental model that contains a breadth of information about a
specific type of object or concept. Schemas are organized into semantic networks based on their
relationships to other schemas (Wertheimer, 1938; Rumelhart and Ortony, 1976). This arrange-
ment helps the brain process its experiences: instead of storing every sensory observation, the
brain only needs to maintain its schemas, which are sufficient summaries of all previous observa-
tions. Some “memories” may even be complete recreations built with a schema (Bartlett, 1932;
Klein et al., 2003). Once the brain associates an event with a schema, it can use the schema to
access unobserved information related to the event. The mind uses this information to assign
meaning to sensory inputs and predict the relationships between data points (Klein et al., 2003).
In this way, the mind uses schemas and semantic networks to construct our perception of reality
from limited sensory input (Neisser, 1967).

People maintain their schemas in a process known as sensemaking. Russell et al. (1993);
Klein et al. (2003); Pirolli and Card (2005) and Zhang (2010) have each proposed a descrip-
tion of the sensemaking process. These models vary in their details, but they all contain the
same basic components, shown in Figure 1. Variations of this basic model have been utilized
by scientists in the fields of cognitive science (Lundberg, 2000; Klein et al., 2003; Helsdingen
and Van den Bosch, 2009); organizational studies (Weick, 1995; Weick et al., 2005); computer
science (Attfield and Blandford, 2009; Russell et al., 1993); knowledge management (Dervin,
1998); intelligence analysis (Pirolli and Card, 2005); InfoVis (Yi et al., 2008); and Visual Ana-
lytics (Wu et al., 2010).

Schema Insights Information

compare

confirm, update, 
or reject

accept or dismiss
as non-credible

scan environment for 
relevant data

search for 
a relevant schema

Figure 1: A simplified summary of the sensemaking process. Schemas are compared to observed in-
formation. If any discrepancies (i.e, insights) are noticed, the schema is updated or the information
is disregarded as untrustworthy.

The sensemaking process revolves around noticing discrepancies between schemas and real-
ity. To understand an event, the brain selects a relevant schema. This selection may be guided
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by context clues or a few initial observations that serve as anchor points (Klein and Crandall,
1995). The brain then uses this schema to scan the environment for relevant sensory inputs.
The schema helps the brain build information from the inputs by assigning meaning to them.
This is similar to Moore’s definition of data as numbers that have been given a context (Moore,
1990). As new information is constructed, the brain tries to fit it into the schema. If a piece of
relevant information does not fit, the schema may be flawed. The sensemaking literature calls
these unique, non-fitting pieces of information insights (Pirolli and Card, 2005). If new infor-
mation contains no insights, the brain retains the schema as it is. If insights are present, the
brain either updates the schema to account for them, dismisses the information as non-credible,
or abandons the schema entirely. In the last outcome, the insights and information would then
guide the selection of a new schema. This process repeats itself whenever further information
becomes available.

Data analysis is a sensemaking task. It has the same goals as sensemaking: to create reliable
ideas of reality from observed data. It is performed by the same agents: human beings equipped
with the cognitive mechanisms of the human mind. It uses the same methods. Experts in
data analysis such as John Tukey and George Box have offered descriptions of the data analysis
process. These descriptions show that data analysis proceeds like sensemaking by comparing
theory to fact, searching for discrepancies, and modifying theory accordingly. According to Box
(1976), “matters of fact can lead to a tentative theory. Deductions from this tentative theory may
be found to be discrepant with certain known or specially acquired facts. These discrepancies
can then induce a modified, or in some cases, a different, theory. Deductions made from the
modified theory now may or may not be in conflict with fact and so on.” Tukey’s view of data
analysis also stresses comparison, discrepancy, and iteration: “Data analysis is a process of first
summarizing [the data] according to the hypothesized model [theory] and then exposing what
remains [discrepancies], in a cogent way, as a basis for judging the model or the precision of this
summary, or both” (Tukey and Wilk, 1966). Both Tukey and Box also emphasize the iterative
nature of data analysis and the importance of successive approximations of the truth.

Sensemaking also explains both exploratory data analysis and confirmatory data analysis.
Many researchers separate data analysis tasks into exploratory and confirmatory parts (for ex-
ample, Mulaik (1985), Chatfield (1995)). As Mulaik (1985) explains, “exploratory statistics are
usually applied to observational data collected without well-defined hypotheses for the purpose
of generating hypotheses. Confirmatory statistics, on the other hand, are concerned with test-
ing hypotheses.” In other words, confirmatory analyses focus on a hypothesis (the schema) and
seek to validate the schema against data. Exploratory analyses focus on the data and seek to
find schemas that explain the data. Many sensemaking descriptions begin with a schema and
then proceed to collecting data as in a confirmatory analysis. However, sensemaking can also
begin with data and then seek a plausible schema as in exploratory analysis. Qu and Furnas
(2008) demonstrates the data to schema direction to sensemaking. In pilot studies of informa-
tion search tools, Qu and Furnas found that people use sensemaking to develop schemas that
explain available data. Early definitions of sensemaking also reflect its bi-directional nature. For
example, Russell et al. (1993) define sensemaking as “a process of searching for a representa-
tion and encoding data in that representation to answer task-specific questions.” To summarize,
sensemaking is an integrated, iterative process with multiple points of entry. Exploratory data
analysis follows a sensemaking loop that begins with data. Confirmatory data analysis follows
a sensemaking loop that begins with a schema (in the form of a hypothesis), Figure 2.

While the general structure of data analysis aligns with sensemaking, its results differ. The
results of unguided sensemaking are too unreliable to meet the goals of science. Science re-
quires objective results that can be recreated under consistent conditions. Sensemaking creates
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Schema Insights Information

search for 
a relevant schema

Exploratory Analysis

Schema Insights Information

Scan environment
for relevant data

Confirmatory Analysis

Figure 2: Exploratory and confirmatory data analysis both follow the sensemaking process. Ex-
ploratory analysis begins with a received data set. A confirmatory analysis begins with a received
schema (often a hypothesis or model).

subjective results that can vary from person to person and from time to time. It is common
experience that different people come to different conclusions when presented with the same
information. This subjectivity occurs because people have and use different sets of schemas
when analyzing information. Unguided sensemaking also has other flaws that increase sub-
jectivity. Tversky and Kahneman (1974) showed that people express predictable biases when
they try to make sense of uncertain information. Tversky and Kahneman (1981) showed that
meaningless changes in the way information is presented can result in complete changes in the
conclusions people draw. These are only two of the most well known biases in human thinking,
many more exist. Fortunately, sensemaking can be augmented in ways that reduce these biases
and foster objective results. Data analysis is shaped by these augmentations.

3.2 External tools of cognition

We can augment sensemaking with external methods of cognition. The human mind has evolved
to rely on external, artificial tools to aid thought (Donald, 1991). These external tools allow us
to perform cognitive feats that would not be possible otherwise. For example, a child may use
a paper and pencil to perform math that they could not do in their head, or an adult may rely
on a written list when grocery shopping (Zhang, 2000). External cognition tools can also be
used to reduce the subjectivity of sensemaking. Data analysis relies on two external tools: data,
which is an external representation of knowledge; and logic, particularly mathematics, which is
an external system for processing information.

External representations of knowledge are information that is stored in the environment.
This information can be stored as physical symbols (e.g, written numbers), as relations embed-
ded in physical configurations (e.g, the beads of an abacus or lines on a map), as systems of
rules and constraints (e.g, the laws of algebra), or in other ways (Zhang, 1997). External repre-
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sentations play an important role in many cognitive tasks. They can extend a person’s working
memory, permanently archive large amounts of data, make abstract information directly acces-
sible, suggest solutions by reducing the number of options, and change the nature of a cognitive
task to something easier (Zhang, 2000). Well chosen external representations can even provide
access to knowledge and skills unavailable from internal representations. For example, the in-
vention of arabic numerals enabled the development of algebra, something that was not possible
with roman numerals or purely internal representations of counts. External representations of
knowledge guide a sensemaker’s attention and give schemas and observations a form that can
be shared among sensemakers.

Data analysis relies heavily upon an external representation of knowledge: measured and
recorded data. Data provides many benefits that reduce the subjectivity of sensemaking. Recorded
data allows large quantities of information to be stored outside of the memory. Here it can be
quickly and easily accessed to support cognition. Recorded data can also be manipulated out-
side of the working memory (e.g. with computers) and shared with other sensemakers. Data is
usually collected in a prescribed manner, which reduces the role that schemas play in attending
to and interpreting observations. Measurement also allows data to be defined with more consis-
tency and precision than the human senses can supply. Finally, precise measurement facilitates
the use of other external cognitive tools such as math and logic.

Systems of rules and constraints can also be external cognitive tools. These systems automate
the extraction and transformation of knowledge. As a result, information can be processed
outside of the working memory. This allows more data to be processed at once, more complex
operations to be performed, and fewer errors to occur during processing. Data analysis relies
heavily on math and logic, which are external systems of information processing. Logic and
math reduce the subjectivity of data analysis by mandating which conclusions can be drawn from
which facts. As Norman (1993) summarizes, “logic is reliable: provide the same information and
it will always reach the same conclusion.” This is not true of unguided sensemaking. Logic also
allows sensemakers to work with entire data sets instead of just the collection of data points
they can mentally attend to. As mentioned at the start of this section, the working memory
seems to only be able to hold two to six pieces of information at once Cowan (2000). Although,
the mind uses various strategies to augment this ability (see for example, Sweller et al. (1998)),
the average modern data set exceeds the capacity limits of the working memory. Finally, math
and logic allow us to perform our reasoning externally, where we can examine it for errors and
biases.

Data analysis can be distinguished from general sensemaking by its reliance on measured
data and math and logic. Data and logic reduce the subjectivity of sensemaking. The use of
these external cognitive tools makes sensemaking more fit for science, which prefers objective
results. Unmodified, our internal knowledge building processes are too subjective to provide
these results. Data, in particular, resists the internal forces that create subjectivity. Data reduces
the tendency of schemas to screen out observations. Data expands our storage and process-
ing powers. Data can be manipulated and examined externally, which allows us to police our
reasoning during sensemaking. But using data introduces new problems: how do we com-
pare abstract schemas to specific, often quantitative, data? How do we identify discrepancies
between schema and data when data contains its own type of variation?
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4 Making sense of measured data

The sensemaking process must be adapted to accommodate measured data. First, schemas
must be made precise to allow comparison against precisely measured data. Schemas must
be made quantitative to be easily compared against quantitative data. Second, a test must be
developed to identify discrepancies between schema and data in the presence of variation. If
data analysis is a sensemaking process, as we propose, each instance of data analysis will exhibit
these accommodations. We discuss these accommodations below.

4.1 Abstract schema, quantified data

Sensemaking proceeds by identifying discrepancies between schemas and reality. These two ob-
jects must have similar forms to allow accurate comparison. However, schemas do not usually
resemble measured data. A typical schema may be as simple as an idea that can be expressed
in a sentence or as well developed as what Kuhn (1962) calls a paradigm, a world view that
not only contains a theory, but also defines what questions are acceptable, what assumptions
are permissible, what phenomena deserve attention, and more. How should an analyst com-
pare schemas against data? The common solution is to deduce a prediction from a schema
that can be tested against the data. The predictions can be simple or complex, but they must
take the same precise or quantitative form as the data. A linear regression model of the form
Y = α + βX + ε is one example of a quantified prediction deduced from a schema. A set of
data simulated from Y = α + βX + ε would be a further prediction from the schema. The un-
derlying schema includes additional non-quantitative information, such as model assumptions,
contextual information, and any other beliefs about the subject matter, data sources, and their
relationships. The direction of causal relationships and the assumption that there are no lurk-
ing variables are two examples of information contained in a schema but not the quantitative
hypothesis deduced from the schema.

Data analysis proceeds by testing these quantitative predictions against data in the usual
sensemaking fashion. We should not confuse these predictions with the actual underlying
schema. They are only deductions that must be true if the schema is true. The validation of
a prediction does not validate the underlying schema because the same prediction may also
be associated with other competing schemas. This ambiguity is most clear in exploratory data
analyses. Exploratory analyses begin with data and then attempt to fit a model to the data.
Often more than one model can be fit, which presents one layer of ambiguity. Then the ana-
lyst must grapple with a second layer of ambiguity: which explanation of reality (i.e., schema)
does the fitted model support? If smoking is correlated with lung cancer, does this suggest that
smoking causes lung cancer (schema 1), that lung cancer causes smoking (schema 2), or that a
third variable causes both (schema 3)? Analysts can reduce ambiguity by using multiple lines of
argument, collecting more data, iterating between confirmatory and exploratory analyses, and
deducing and testing as many predictions as can be had from each schema.

Transforming schemas is not the only way to facilitate comparison. Often it is also useful to
transform the data to resemble a schema or model. Schemas parallel the way humans think,
which rarely involves sets of measured numbers. More often a schema will only describe a char-
acteristic of the data, such as the mean, maximum, or variance. In other occasions, a schema
may focus on a variable that must be derived from the data, such as a rate (count/time) or
density (mass/volume). Mathematical calculations can transform the data into the appropriate
quantity prior to comparison. Exploratory analysis can be made simpler by transforming data
to resemble familiar situations. For example, “curved” scatterplots can be unbent with a log
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transformation to resemble linear scatterplots. This aids schema search: humans have more
schemas to explain familiar situations than they do to explain unfamiliar ones. It also facili-
tates comparison: humans are better at perceiving differences on a linear scale than a curved
one. Visualization is another way to transform data that allows analysts to use their strongest
perceptual abilities.

In summary, human cognitive processes are unaccustomed to sets of measured data. To
use such data, a sensemaker must transform his or her schemas to resemble data. This can
be done by deducing precise predictions from the schema (such as the models commonly used
by statisticians). Often it can be helpful to transform the data as well. The need to navigate
between schema and prediction/model characterizes all data analyses and distinguishes data
analyses from general sensemaking.

4.2 Omnipresent variation

Variation creates a second distinction between general sensemaking and data analysis. Variation
in quantitative data is an omnipresent and demonstrable reality (Wild and Pfannkuch, 1999).
In usual sensemaking tasks, this variation goes unnoticed. Observers assign observations to
general categories (Rosch and Mervis, 1975). Variation is only noticed when it is large enough
to place an observation in an unexpected category. Measurement, however, reveals even small
variations. These variations disrupt the sensemaking process. A model will appear discrepant
with data if it does not account for all of the sources of variation that affect the data. This is
not a failure of sensemaking. Afterall, a schema can not be a very accurate model of reality if
it does not account for variation that exists in the real world. However, it is unlikely that any
model used in data analysis will describe all of the relevant sources of variation. Cognitive,
computational, and financial constraints will intervene before every associated variable can be
identified and measured. Moreover, many sources of variation will have little to do with the
purpose of the analysis. To summarize, the omnipresence of variation in quantitative data
derails the sensemaking process. Discrepancy ceases to be an informative signal; unobserved
sources of variation will create minute discrepancies between predictions and observations even
if a schema correctly describes the relationships between observed variables.

Data analysis proceeds by examining schemas and models that predict a pattern of outcomes.
This pattern can then be compared against the pattern of the data. Models that predict a pattern
do not need to be very complex. Probability theory provides a concise, expressive, and mathe-
matical toolbox for describing patterns. A deterministic model can be transformed into a model
that predicts a pattern by adding a probability term. This term acts as a “catch all” that describes
the combined effects of all sources of variation that are not already explicitly accounted for in
the model.

Comparing patterns changes the task of identifying discrepancies in an important way. To
accurately diagnose a discrepancy between two patterns, an analyst must observe the entirety of
both patterns, which is rarely an option. The entire patterns may contain a large or even infinite
number of points. Research budgets will intervene before the observation can be completed.
However, comparing subsets of two patterns can be misleading; a subset of a pattern may look
very different than the overall pattern. The data analyst must decide whether or not an observed
discrepancy between sub-patterns implies a genuine difference between the entire patterns. This
introduces a new step into confirmatory analyses: the analyst must decide whether observed
differences between the hypothesis and data imply actual differences between the hypothesis
and reality. In exploratory analyses, an analyst must decide how closely to fit a model to the
data. At what point does the model begin to fit the sub-pattern of the observed data more closely
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than the implied pattern of the unobserved data? These variance related judgements provide a
second characterization of data analysis.

These judgements become harder when data is contaminated with measurement bias and
sampling bias. Both types of bias obscure the true pattern of unobserved reality, which inval-
idates the results of sensemaking. Bias can be minimized by ensuring that the observed data
accurately represent reality and that measurements are made accurately. This may require iden-
tifying (but not measuring) all of the data points contained in the pattern, which is sometimes
referred to as the population of interest, as well as identifying the relationships between unob-
served points and the observed points. These considerations make data collection a more salient
part of data analysis than information collection is in sensemaking. Obviously, data analysts can
not always control how their data is collected. However, data analysts should always seek out
and consider evidence of bias when making variance related judgements. Avoiding and consid-
ering bias may be considered a third characteristic of data analysis that distinguishes it from
general sensemaking.

5 A conceptual model of data analysis

Data analysis combines sensemaking with two data related considerations: how can we com-
pare abstract schemas to precise data? And, how can discrepancy between schema and data
be distinguished from variance? These considerations combine with the general sensemaking
structure to create a conceptual model of the data analysis process, see Figure 3. Data analyses
proceed as a series of iterations through sub-loops of this process. Individual analyses will vary
by the paths they take and the methods they use to achieve each step.

A generalized exploratory task proceeds as follows:

1. Fit a tentative model to available data

2. Identify differences between the model and data

3. Judge whether the differences suggest that the model is misfit, overfit, or underfit (dis-
crepancies)

4. Retain or refine the model as necessary

5. Select a plausible schema that interprets the model in the context of the research

A generalized confirmatory task proceeds in the opposite direction:

1. Select an appropriate schema to guide data collection.

2. Deduce a precise hypothesis from the schema. Multiple hypotheses may be developed to
test multiple aspects of the schema.

3. Identify the set of data that would be relevant for testing the hypothesis

4. Collect a representative subset of the data.

5. Identify differences between data and hypothesis

6. Judge whether the discrepancies imply a meaningful difference between the hypothesis
and reality or result from random variation or faulty data

7. Confirm, update, or reject the hypothesized model (and its associated schema)

This model parallels the descriptions of data analysis offered by Chatfield (1995), Wild and
Pfannkuch (1999), MacKay and Oldford (2000), Cox (2007), and Huber (2011) as well as the
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Figure 3: Data analysis parallels sensemaking. Analysts deduce a precise hypothesis (model) from
the schema, which they compare to the data or a transformation of the data. Analysts must attempt
to distinguish discrepancies between schema and data from differences that result from variance
and bias. Analysts must also match each accepted model back to a schema to provide interpretation
in real world concepts.
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description of data analysis offered by Tukey and Wilk (1966), and Box (1976) which we dis-
cussed before. The model also lends these descriptions explanatory power: data analysis follows
consistent stages because it is a sensemaking process that has been adapted to accommodate
data. We briefly discuss the alignment of these descriptions with the cognitive model of data
analysis below.

5.1 Chatfield (1995)

Chatfield (1995) divides an idealized statistical investigation into seven stages. As with the
proposed model, the methods used in each stage will vary from situation to situation. The seven
stages loosely follow our proposed model:

1. Understand the problem and clarify objectives (begin with a schema)

2. Collect data in an appropriate way (collect data)

3. Assess the structure and quality of the data, i.e, clean the data

4. Examine and describe the data (transform data into words, visuals, etc.)

5. Select and carryout appropriate statistical analyses

(a) Look at data (transform into visuals)
(b) Formulate a sensible model (make schema precise)
(c) Fit the model to the data (fit model)
(d) Check the fit of the model (identify discrepancies)
(e) Utilize the model and present conclusions

6. Compare findings with further information, such as new data or previous findings (iterate)

7. Interpret and communicate the results

Many of Chatfield’s stages directly map to steps in the cognitive model (shown in italics
above). Other stages align with sub-loops of the cognitive model, such as step 3, which requires
comparing the data to a schema of “clean” data and then updating the data set. Chatfield’s final
stage does not match the cognitive model. We agree that communication is an important part of
the data analyst’s job; however, it occurs after sensemaking has finished. As such, it deals with
a different set of cognitive concerns and we refrain from examining it in this article.

5.2 Wild and Pfannkuch (1999)

Wild and Pfannkuch (1999) develop a model of the “thought processes involved in statistical
problem solving.” This model has four dimensions, but the first dimension is a description of
the phases of a data analysis: problem, plan, data, analysis, conclusions (PPDAC). These phases
were developed by Mackay and Oldford and later published in MacKay and Oldford (2000).
The problem stage involves defining the problem and understanding the context. In these re-
spects, it resembles selecting an initial schema. The plan and data stages involve collecting
data relevant to the problem. The analysis stage includes data exploration and both planned
and unplanned analyses. These activities search for relevant models and identify discrepancies
between the model and the data, when they exist. The final stage, conclusions, encapsulates
communicating and using the understanding developed by the analysis. Wild and Pfannkuch
(1999) develop connections between data analysis and cognition in other ways as well. They
conceptualize applied statistics as “part of the information gathering and learning process.”
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Wild and Pfannkuch also argue that scientists utilize statistical modeling because we are in-
capable of handling the enormous complexity of real world systems, which include variation
in innumerable components. Modeling provides data reduction, which allows understanding.
Schemas play the same role in sensemaking by distilling data and assigning meaning. Wild and
Pfannkuch further argue that statistical models become the basis of our mental models, where
understanding accumulates, an observation supported by the cognitive model of data analysis.

5.3 Cox (2007)

Cox (2007) discusses the main phases of applied statistics with a focus on technical consider-
ations. Like Chatfield (1995) and Wild and Pfannkuch (1999), Cox divides data analysis into
general phases that parallel the sensemaking model: formulation of objectives, design, measure-
ment, analysis of data, and interpretation. The formulation phase parallels selecting a schema.
The design and measurement phases focus on acquiring relevant data. The data is analyzed
by searching for discrepancies with the model. Cox’s interpretation phase focuses on parsing
the results of analysis into new understanding. Our model describes this in cognitive terms as
matching the accepted model to a schema.

5.4 Huber (2011)

Huber (2011) divides data analysis into the following activities.

1. Planning and conducting the data collection (collect data)

2. Inspection (transform data)

3. Error checking

4. Modification (transform data)

5. Comparison (identify discrepancies)

6. Modelling and model fitting (model fitting)

7. Simulation (make schema precise)

8. What if analyses

9. Interpretation (match model to a schema)

10. Presentation of conclusions

Most of these activities directly appear in the cognitive model of data analysis. Other activ-
ities, such as error checking, play a general support role to the distinct phases of data analysis
that appear in the cognitive model. Like Chatfield (1995), Huber also highlights the impor-
tant role of communication, which is not covered by the cognitive model. Huber parts with
the cognitive model by asserting that “ordering the [above] pieces is impossible.” However, Hu-
ber’s explanation of this agrees with the cognitive model: “one naturally and repeatedly cycles
between different actions.”

The model of data analysis proposed in this section synthesizes insights provided by promi-
nent descriptions of data analysis. The model explains why these descriptions take the form that
they do, and the model provides a framework for understanding data analysis: data analysis is
a sensemaking process adapted to measured data. The cognitive model of data analysis also
offers an immediate implication for the practice of data analysis, which we discuss in the next
section.
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6 Implications for data analysis practice

The cognitive model of data analysis predicts a set of problems that may undermine data analysis
practice. The mind uses sensemaking to build knowledge of the world, but the process has
known flaws. If data analysis is built upon sensemaking as we propose, it will inherit these
flaws. Each flaw poses challenges for a data analyst. In this section, we discuss two of these
flaws and illustrate each with a case study of a notable data analysis failure.

6.1 Data analysis is biased towards accepted schemas

The nature of cognition tends to undermine the sensemaking mechanism for detecting faulty
schema. People only attend to a small portion of the information in their environment, and
schemas direct where this attention is placed (Klein et al., 2003). To understand an event,
the brain selects a relevant schema. This selection may be guided by context clues or a few
initial observations that serve as anchor points (Klein and Crandall, 1995). The brain then
uses this schema to scan the environment for additional relevant sensory inputs. The schema
then helps the brain build information from the inputs by assigning meaning to them. In other
words, schemas determine where attention will be placed and how observations will be inter-
preted (Klein et al., 2003). Information that contradicts a schema is less likely to be noticed
(Klein et al., 2003), correctly interpreted (DeGroot, 1965), or recalled later (Woodworth, 1938;
Miller, 1962). As a result, the mind is prone to retain incorrect schemas. This tendency has been
well documented in educational research. Students are more likely to misinterpret new infor-
mation than update their misconceptions. For example, when children are told that the world
is round, they are more likely to picture a pancake than a sphere (Vosniadou et al., 1989). High
school students are likely to retain an Aristotelian worldview even after completing a year long
curriculum in Newtonian physics (Macabebe et al., 2010). Statisticians are not immune to this
schema inertia either. The “hot hand” effect in basketball (Gilovich et al., 1985) and the Monty
Hall problem (Tierney, 1991) are two well known examples where students (and sometimes
professors) have been unable to update their schemas despite statistical training.

The mind tends to discredit observations before beliefs whenever it is easy to do so. A
direct experience that requires minimal interpretation is often necessary to impugn an accepted
schema. In the classroom, schema change can be initiated by having the student examine their
beliefs and then creating an experience that directly contradicts the faulty schema (Bransford
et al., 2000). In naturalistic settings, schema change usually does not occur until experience
violates expectation, creating a shock or surprise (Klein et al., 2003).

The discovery of the hole in the ozone layer illustrates the inertia that incorrect schemas
can have in an analysis. In 1974, Molina and Rowland (1974) predicted that industrial use
of chlorofluorocarbons (CFCs) could deplete levels of atmospheric ozone, which could have
dangerous environmental effects. According to Jones (2008), NASA’s Nimbus-7 satelite began
to record seasonal drops in ozone concentrations over Antarctica just two years later. These
drops went unnoticed for eight years until the British Antarctic Survey spotted the decrease in
ozone through its own measurements in 1984 (Farman et al., 1985). Why did analysis of the
Nimbus-7 data fail to reveal such a dramatic phenomenon for eight years?

The Nimbus-7 delay demonstrates the need to address low level schemas during a data
analysis. Analysts normally focus on quantifiable models, which are deductions from low level
schemas. But it is the cognitive schema that will dictate where analysts direct their attention
and how they will explain their findings. These cognitive schemas are particularly dangerous
because they often persist in the presence of contradictory information.
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NASA programmed the Nimbus-7 to flag observations of low ozone as unreliable, which
accords with an initial belief that ozone values should fall in a known range. When NASA
scientists encountered these values, the flag made it easy to explain away the data and preserve
their schema. Moreover, the unreliability hypothesis was easy to believe because the Nimbus-7
observations depended upon numerous mechanical, electrical, and communication systems. In
other words, the observations were collected through a process too complex for the analysts to
cognitively comprehend or mentally check. This could explain why the data did not raise any
alarm bells; evidence suggests that observations that seem less certain than direct experience
will be ineffective for removing faulty schemas.

The BAS team had two advantages on the NASA team. First, the BAS team did not receive
a pre-emptive flag of unreliability with their low ozone measurements. Second, the BAS team
measured ozone in person in Antarctica and used much simpler equipment than the NASA
team. This imbued their observations with the jolt of direct experience, which facilitates schema
change. The lack of complexity in the measurement process allowed the BAS team to assign the
same confidence to the measurements that they assign to their everyday sensory experiences.

Analysts can not always collect their data in person with simple tools. However, analysts
can guard against faulty schemas by addressing the mechanisms that allow them to persist:
mis-attention and premature data rejection. Analysts should consider whether or not they have
sought out the type of data that would be likely to disprove their basic beliefs should they be
wrong. Analysts can further avoid mis-attention by focusing on all plausible schemas. Tukey
(1960) advocates for this approach. According to Tukey, science examines “a bundle of alter-
native working hypotheses.” Conclusion procedures reduce the bundle to only those hypotheses
“regarded as still consistent with the observations.” Considering all plausible schemas helps
prevent the adoption of a faulty schema, which may then mis-direct an analyst’s attention.

Once data has been collected, analysts should be circumspect about rejecting data. Indi-
viduals are prone to reject data as erroneous when it violates their basic ideas about what data
should say. However, this prevents the analyst from discovering that their basic ideas are wrong.
Data cleaning is a useful and often necessary part of an analysis, but analysts should be wary of
using part of a schema under consideration to filter their data. Instead, data points should only
be rejected when a source of error can be found in the data collection or generation mechanism.

Finally, we suspect that analysts can approximate the jolt of direct experience by visualizing
their data. NASA’s flagged ozone observations were highly structured. They occurred in a
temporal pattern (ozone dips low each Antarctic spring and then recovers). They also occurred
in the same geographical location in the Southern Hemisphere. We speculate that had the
NASA team noticed this by visualizing their data, the pattern would have been as striking as
direct experience and prompted a schema change.

6.2 Data analysis does not prove its conclusions

Data analysis inherits a second flaw from sensemaking; it relies on an unsound logical connec-
tion between premise and conclusion. As a result, data analysis does not prove its conclusions
with logical certainty, and hence, does not completely remove the subjectivity of sensemaking.
The reasoning an analyst uses to adopt a schema on the basis of data is as follows:

If schema P is true, data should look like Q
The data looks like Q

Therefore schema P is true
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This type of reasoning is not rare, nor is it useless. It is so common in science that it has been
given a name: abduction. Abduction was introduced and broadly explored by Peirce (1932).
It has been discussed more recently in a statistical context by Rozeboom (1997). Abduction
does not prove its conclusions unless there is a one to one mapping between P and Q. More
often, alternative schemas R, S, etc. exist that also predict that the data should look like Q. If
the data looks like Q, this increases the likelihood that P is true, but it does not rule out the
possibility that P is false and R or S is instead true. Yet this is how the human mind functions
when sensemaking, and it is how data analysts must function as well.

Data analysts can improve the success of abduction with statistical techniques. Many sta-
tistical techniques perform an optimized abduction within a constrained set of models. For
example, maximum likelihood estimation chooses the model of the form P (X = x) ∼ f(x|θ)
that is most likely to explain the data. However, maximum likelihood does not guarantee that
the true explanation is in the set of models of the form P (X = x) ∼ f(x|θ) to begin with. Many
statistical methods, such as the method of moments, statistical learning methods, and bayesian
estimation methods are all also ways to guide abductive selection. Statistical methods provide
a significant advantage over unguided sensemaking. Humans are extremely prone to be biased
by emotionally salient information when reasoning about likelihoods (Tversky and Kahneman,
1974). Statisticians frequently use models as tools without assuming the models are true. This
mitigates reliance on abduction. Nevertheless, the abductive nature of data analysis requires
caution and corroboration before data is used to make weighty decisions.

The space shuttle Challenger accident demonstrates the need to strengthen abductive argu-
ments with further analysis. NASA decided to launch the space shuttle in 31◦F weather despite
worries that the shuttle’s O-rings would leak at that temperature. The O-rings failed, killing
all aboard. Prior to launch, engineers from NASA and Morton Thoikol, the manufacturer of
the space shuttle, examined data on the relationship between O-ring failure and temperature.
They concluded that no relationship existed. This analysis has been widely scrutinized and
criticized (see for example, Dalal et al. (1989), Tufte (1997), Presidential Commission on the
Space Shuttle Challenger Accident (1986), etc.). However, the data that NASA examined could
be construed to support the belief that temperature does not affect O-ring performance. The
seven data points that NASA examined could be seen as random cloud that does not vary over
temperature, Figure 4 (top). Alternatively, they could be seen as a parabola that suggests in-
creasing danger at extreme temperatures. This is the nature of abduction, it does not rule out
competing plausible explanations.

To strengthen its conclusions, NASA should have sought to corroborate its view with a second
line of evidence. NASA had access to 17 additional data points from shuttle launches that
it could have examined. These points would have cast doubt on NASA’s conclusion; a trend
between O-ring failure and temperature appears when the additional data points are considered,
Figure 4 (bottom).

Even more analysis, however, may have been needed to avert disaster. Lavine (1991) points
out that any attempt to predict performance at 31◦F from the data would be an extrapolation
since the observed data all occurred between 53◦F and 81◦F. In other words, multiple models
could be fit to the existing data and each would predict the performance at 31◦F differently. In
fact, a careful statistical analysis that considered the leverage of each available data point could
potentially be seen as evidence that 31◦F would increase the risk of O-ring erosion, but not by
enough to pose a severe danger (Lavine, 1991).

In summary, abduction even assisted by statistics could not differentiate between an event-
less launch and catastrophe based on the available data. Data analysis could be used to support
either argument, although the argument for danger would have appeared stronger. To validate
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one of the arguments, NASA and Morton Thoikol would have had to collect new data near 31◦F
that could distinguish between competing models. Such data was collected during the inves-
tigation of the Challenger disaster. A controlled experiment of O-ring performance at different
temperatures reported by Presidential Commission on the Space Shuttle Challenger Accident
(1986) (p. 61–62) demonstrated conclusively that O-rings would not perform safely at 31◦F.

In general, analysts can avoid trouble by acknowledging the abductive nature of data analy-
sis. Researchers should view an analysis as an argument for, but not proof of its conclusions. An
analyst can strengthen this argument by judging the strengths and weaknesses of the argument
during the analysis and adjusting for them. An analyst can also continue an analysis — often by
collecting new data — until one schema appears much more plausible than all others.

Controlled experiments, expertise, and corroboration can also be used to strengthen the ab-
ductive step of data analysis. An experiment can be designed to limit the amount of plausible
schemas that can be abduced from, which increases the likelihood of success. Subject matter
expertise provides the analyst with more relevant schemas to select from, which allows a bet-
ter mental approximation of reality. Expertise also helps ensure that the analyst will know of a
correct schema, which is a prerequisite for selecting one during abduction. Expertise also broad-
ens the amount of previous information and data that the analyst can utilize when matching a
schema. Finally, an independent line of argument can corroborate the results of an abduction if
it comes to the same conclusion.

7 Conclusion

This paper identifies data analysis as an extension of the internal cognitive processes that build
knowledge. In particular, we propose that data analysis is a sensemaking process that has been
modified to use precisely measured data. This improves the performance of sensemaking, but
creates a new set of problems that exist in every data analysis. Every data analysis must choose a
way to express abstract concepts precisely (often quantitatively). Every data analysis must also
find a way to identify discrepancies between a schema and reality in the presence of variation.
These problems characterize data analyses and give them a recognizable pattern. Moreover,
data analysis inherits weaknesses from the sensemaking processes upon which it is built. In
this paper, we identify two such weaknesses: the unusual persistence of false schemas and the
unavoidable subjectivity of model and schema selection.

We began this paper by pointing to the need for a formal theory of data analysis. Does
the cognitive model of data analysis qualify as a formal theory of data analysis? Perhaps not.
Philosophers of science have offered multiple definitions of a scientific theory. These range
from the axiomatic to the semantic and usually require a degree of mathematical precision that
our conceptual model does not offer. However, the cognitive model of data analysis meets our
pragmatic view of a theory. It offers an explanatory framework for data analysis that synthesizes
available information and makes predictions about data analysis tasks.

The cognitive model of data analysis may not change the way data analysis is practiced by
experienced statisticians. We believe that the prescription offered by the model is very similar to
current expert practices. The value of the model lies instead in its portability. Current methods of
statistical training have been criticized because novices must acquire years of experience before
they settle into expert data analysis practices. In contrast, the cognitive model can be taught
to novice statisticians to guide data analysis practices from the get go. It is easy to understand
that a data analysis seeks to minimize discrepancies between theory and reality. It is easy to
accept that the mind goes about this in an innate way. It is also easy to see that this task can
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be hindered by cognitive, logistical, and epistemological obstacles. The details of data analysis
emerge as these problems arise and are overcome.

The cognitive model also provides a way to unify the field of statistics, as advocated by Huber
(1997); Viertl (2002) and others. The model focuses on cognition, but it does not ignore the
contributions of statistics to data analysis. Instead it organizes them. Statistical pursuits can be
associated with the steps of data analysis that they perform or support. Individual techniques
of data analysis, such as design of experiments, data visualization, etc., can be categorized and
criticized by identifying which problems they solve. This arrangement highlights how different
areas of statistics interact with each other. It also provides a global framework for students
trying to master the field of statistics.

The cognitive model also offers guidance for adapting data analysis to new contexts. Small
sample statistical methods may become less applicable as the size and nature of data sets change,
but the general structure and challenges of data analysis will remain. The cognitive model iden-
tifies these challenges: analysts will need methods that facilitate comparisons between data and
schema and allow judgements of dissimilarity in the presence of variation. Analysts will need
ways to develop abstract schemas into precise models that describe patterns of observation, and
they will need guidance for transforming the best fitting models into real world explanations.

Finally, a cognitive interpretation of data analysis also offers a way to improve current data
analyses. A cognitive view suggests that cognitive phenomena may adversely affect data anal-
ysis – often in unnoticed ways. We examined two such effects in Section 6. Other cognitive
phenomena with other effects should also be looked for. Each would provide new opportunities
to improve data analysis. This focus on the human analyst distinguishes the cognitive model of
data analysis from other models of science, which it may appear similar to. A focus on the hu-
man analyst is necessary. When errors in analysis occur, they will do harm because they violate
Aristotelian logic or Sir Karl Popper’s principles of falsification. But the cause of these errors
will be ingrained human tendencies. To prevent such errors, data analysts must understand and
watch for these tendencies.
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