Statistical graphics
(Hadley Wickham, Rice University)

1 Introduction

The field of statistical graphics is extremely broad. This article is my personal take on it, focussing on the
connections to statistics and the results most important for creating insightful graphics. I have tried to select
references that are accessible and informative, if not always the first published on the topic.

Graphics are useful because they display data in a way that is easy for the brain to parse and interpret. All
displays of data are not equally accessible: we need to learn a little cognitive psychology to guide our choices.
This is the topic of Section [2] which discusses three topics important to visualisation: the perception of
continuous values, colour and differences. Section [3| gives a broad overview of static graphics, including the
origins the most common statistical graphics, plots of statistical summaries, graphics for high-dimensional
data, display spatial data, and the grammar of graphics, a theoretical framework that connects together
many data graphics.

2 Perception

A small amount of knowledge about perception goes a long way in helping to understand and design effective
visualisations. Here I touch on the aspects of perception that I think are most important: reading continuous
values, Section [2.1] seeing colour, Section and spotting differences, Section Many of the most
common graphical problems are caused by a lack of knowledge of these topics.

2.1 Perception of continuous values

Cleveland and McGill [10} [11]] asked how we can display continuous data so that it can be most accurately
decoded. Building on psychological theory, the authors performed an experiment asking participants to
judge the relative proportion of two numbers displayed in different ways: as the height of bars, the length
of lines, the areas of circles, and so on. The error rates associated with each graphical encoding gives an
ordering from easiest to perceive to hardest. Heer and Bostock [28]] recently reproduced this work on a large
scale and with several new perceptual tasks, and found very similar results, as shown in Figure

In brief, perceptual difficulty falls roughly into five groups from easiest to hardest: position along a
common scale (T1, T2, T3), length and angle (T4, T5, T6), area (T7, T8, T9), volume and curvature,
shading and colour saturation [10]. This ranking is extremely important because it provides a basic guide
for the construction of new graphics: map the most important variables to the graphic properties that are
the easiest to perceive.

However, these results don’t tell the full story about perception. Area and angle are ranked lowly on this
scale, which suggests that pie charts do not support accurate comparison. This is true, but comparing two
numbers is only one question that can be asked of a plot. For other challenges, like comparing compound
proportions, the pie chart has been found to be superior to the bar chart [38, [40]. Whenever declaring one
chart “better” than another, we must be very careful about our definition of better.

2.2 Colour

Colour is important. It is not useful for the accurate decoding of continuous variables, but it is a powerful
indicator of trend, and very useful displaying discrete variables. The perception of colour is a complex topic,
but knowing a little bit about colour theory can help make the most of colour in your graphics and help you
to avoid some common pitfalls. The focus of this section is on colour spaces, the numerical description of
colour.
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Figure 1: Error rates associated with comparison of two numbers displayed in various ways. Log 2 means displayed with
95% confidence intervals. Used with permission from XXX YYY.

You are probably most familiar with the RGB colour space which represents colours as a mixture of red,
green and blue light. While this is an accurate model for how the eye perceives light, it does not match
the brain’s internal colour model. A better model is the hcl colour space, which breaks colour down into
hue, chroma and luminance components [51]]. Figure [2| shows five slices out of the space: luminance, or
brightness, varies between the slices; hue varies with angle; chroma, or intensity, varies with distance from
the origin. Compared to the RGB space, which is a simple cube, the hcl space has a much more complex

shape because of the irregularity of colour perception. A more thorough introduction to colours is provided
by Stone [41]].
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Figure 2: Five luminance slices (at 10, 30, 50, 70 and 90) from the hcl colour space. Not shown are slices at luminance
0 and 100 which are black and white dots respectively. Hue is given by the angle and chroma by the distance from the
origin (marked with white lines). The range of possible chroma varies with both hue and luminance.

The hcl colour space is important for a few reasons. It is a perceptual space, which means that a unit
of distance has an (approximately) equal perceptual difference everywhere in the space; this is not the case
for RGB. Chroma and luminance are ordered, and so are useful for continuous variables, while hue is not
ordered, so is appropriate for discrete variables. Colours with moderate chroma and luminance tend to be



more aesthetically appealing and restful on the eyes. Zeileis et al. [51]] discuss a number of colour schemes
that take advantage of these properties. Brewer [5, 6] combine the principles with user testing to develop a
set of schemes tailored for maps, and made available at http://colorbrewer2.org/.

Figure |3| illustrates three colour scales. The top two use the hcl colour space, and illustrate one scale
with equal chroma and luminance at each end and one scale with varying luminance: there is a clear
ordering when luminance is varied, but not when both chroma and luminance are constant. The bottom
scale illustrates why the hcl space is so important. The rainbow colour scheme is path through the RGB
colour space, but we do not see a smooth transition from colour to colour: instead we see discrete regions of
roughly constant colour punctuated by abrupt changes. For this reason, rainbow schemes are best avoided.
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Figure 3: Three colour scales. The top two use hcl, and the bottom one uses RGB. The rainbow colour scheme has severe
problems: even though it is a smooth path through rgb space, we not perceive it as such.

Another important fact about colour is that 5-10% of men have some sort of red-green colour impairment.
For this reason, red-green colour contrasts should be avoided (heatmaps are a frequent offender) and redun-
dant encodings should be used where possible (i.e. use both shape and colour in a scatterplot). Vischeck
(http://www.vischeck.com/) and Color Oracle (http://colororacle.cartography.ch/) are useful tools
for simulating colour blindness and testing for potential problems.

2.3 Spotting differences

Determining the distance between two curves is a surprisingly challenging task because the brain computes
the shortest distance between lines, rather than the horizontal difference, is typically most important statisti-
cally. Figure [4]illustrates this problem with two curves offset by a constant. It looks like the curves are closer
together on the left and further apart on the right. Even taking the relatively strong step of drawing vertical
lines is of limited help. Be very cautious when displaying multiple curves and expecting viewers to compare
them: it is far better to calculate the differences and draw them directly.

We are also surprisingly bad at spotting differences over time, and often fail to spot both dramatic and
gradual changes. I recommend watching the following youtube videos which illustrate our inability to spot
changes over time: http://youtu.be/mAnKvo-£fPs0, http://youtu.be/vIG698U2Mvo, http://youtu.be/
1nL5ulsWMYcl They are short and surprising, and you will be amazed by how easy it is to miss obvious
patterns.

3 Static graphics

Understanding perception helps create new graphics, but if you don’t have a solid understanding of what
graphical forms have been explored, you’ll spend a lot of time recreating the wheel. This section discusses
some of the most important existing graphics, starting with a look back at where the most common statistical
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Figure 4: Top curve: y = 1/z, bottom: y = 1/x + 0.1. (Left) Each function drawn with its own line: lines look much
closer on the left than the right. (Right) Vertical difference between the functions accentuate by drawing evenly spaced
vertical lines. between the Even emphasising the vertical distance by drawing vertical lines doesn’t help, a strong optical
illusion remains.

graphics have come from (Section(3.1)), continuing on to discuss plots that display statistical summaries (Sec-
tion [3.2) and plots specially designed for high-d data (Section [3.3)), and finishing with a look the grammar
of graphics (Section 3.5), a theoretical framework that ties together many existing graphics.

3.1 Classic graphics

Many of the most commonly used graphics of today have been around for a long time. Playfair invented the
bar and line charts in 1786, and the pie chart in 1801 (both works now available as Playfair et al. [35]).
The scatterplot was invented in the 1830s [[19, [39]], although it wasn’t until 1975 that the scatterplot matrix
was seen in print [25]. Michael Friendly’s graphical milestones, http://www.datavis.ca/milestones/, is
an excellent resource to explore the historical development of these and many other plots.

3.2 Displaying summary statistics

Displaying raw data is only practical when the amount of data is small. This is a particular problem for 1d
data: it is very difficult to see the distribution of points plotted along a single axis, because many points
will be overlaid on one another. This is the problem of overplotting. This leads to the development of the
histogram in the 1840’s [[18] and the boxplot in the 1970’s [43]]. This section focusses on two other important
techniques for dealing with large datasets: improvements to the histogram for 1d and scatterplot smoothers
for 2d.

Histograms are problematic because they can be extremely sensitive to the position of the origin: shifting
the origin by a small amount (or even changing from right-open left-closed to left-open right-closed inter-
vals) can dramatically change the resulting shape. The average shifted histogram (ASH) [37] is a simple
(and computationally efficient) way of overcoming this problem: compute histograms with multiple starting
points and then average over them. A more sophisticated alternative is the kernel density estimate (KDE)
[vad014] [36], which computes the density at each location from a weighted estimate of neighbouring points
and yields a smooth estimate with desirable statistical properties. A plot of a KDE is often called a density
plot. Figure |5|illustrates the histogram, ASH and density plot for a mixture of two normals.

Scatterplots of large data suffer a similar problems to dotplots: overplotting obscures the bulk of the
data. They also suffer from a new problem: extreme points may distract the eye and mislead the reader
about the true relationship. We can alleviate both problem by fitting a smooth curve through middle of the
data, helping draw the eye towards the signal, not the noise. A simple approach parallels the histogram:
divide the data into bins along the x axis, then display the mean of the y values in each bin [16]. Cleveland
[9] built on this approach in a similar way to the KDE, smoothly varying the weights used to estimate the


http://www.datavis.ca/milestones/

Figure 5: Three displays of a mixture of two normals. From left to right: histogram, average shifted histogram and
density plot. Parameters selected to give approximately the same degree of smoothness.

mean at each location. This technique is called lowess (locally weighted scatterplot smoothing) or loess.
Figure [6illustrates these two methods.
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Figure 6: Three displays of a scatterplot of 4000 points. Raw data (left), raw data overlaid with binned means (centre),
and raw data overlaid with a loess curve (right). It is easier to see the subtle non-linearity when a summary curve is
added.

A related technique is “smoothing by weighted average of rounded points” [24]], which applies the com-
putationally efficient ASH approach to generate scatterplot smoothers for 2d (and higher). Other useful
techniques that come from a more explicit modelling background are generalised additive models [vag007]
and smooth non-parametric quantile regression [vhn091].

Density techniques also readily extend to 2d (the 2d histogram and 2d KDE) and can also be useful for
dealing with overplotting. A complication is the choice of bin shape: there is only one way to slice up the
real line, but many ways to partition the real plane. The simplest approach is to use rectangles, but these can
produce distracting visual artefacts because of the gridding. An alternative is to use hexagons Carr et al. [7]],
which, surprisingly, are no more computationally complex than squares. Figure[7|illustrates three 2d density
estimates. Compared to smoothing-based techniques which focus on the distribution of y conditional on z,
density based techniques tend to focus on the joint distribution of y and .

One complication of summary methods is that we now have a parameter to select: how wiggly do we
want the curve? (The binwidth for the histogram, the bandwidth for KDEs and the span for loess). There
have been many automated criteria proposed, typically focussed on minimising the integrated mean square
error, but some have argued that this is not the right criteria for data analytic graphics [13]. It is often
better for displays to be slightly undersmoothed, so that you can spot suspicious deviations, but still do some
smoothing by “eye”. Additionally, there may not be one optimal value, but a small set of values each of which
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Figure 7: Four displays of a mixture of two normals, as in Figure @ From left to right: histogram, average shifted
histogram and density plot. Parameters selected to give approximately the same degree of smoothness.

illustrates different features of interest. This is analogous to the problem of aspect ratio selection [27].

3.3 Multidimensional data

Other plots have been invented specifically to better display multidimensional data:

e Mosaic plots [26] [29]] are a tool for high-dimensional categorical data that recursively partition
space according to counts in contingency table. A recent extension that includes bar charts and
treemaps is the product plots framework [[47]].

e Parallel coordinate plots, first used by Maurice d’Ocagne in 1885, were rediscovered and formalised by
Inselberg and popularised in statistics by Wegman [44]]. They work by displaying data in a pro-
jective geometry. Axes are displayed in parallel, and observations are drawn as lines connecting their
values on each axis. There has been much work done on the problem of selecting optimal orderings.
See Hurley and Oldford [31] for a recent approach.

e Glyph plots convert display each observation as a glyph or icon, where data values are mapped to
various properties of the glyph, such as length of lines [}, 33]], or (infamously) as elements of a human
face [8]].

These plots tend to work with best with a moderate numbers of dimensions (10-20). There are fewer
off-the-shelf methods available for very high-dimensional data sets, and analysis demands a tight integration
between modelling and visualisation tools. One popular tool is the heatmap: a matrix display that colours
tiles according to value. The ordering of rows and columns (“seriation”) is critical for making informative
displays. Hahsler et al. provides a review of the relevant literature and describes their implementation
in an eponymous R package. Heatmaps exploded in popularity in the biological literature in the 1990s,
but ancestors have been around since the late 19th century [50]. A common problem with heatmaps is
the use of the red-green colour scale: 5-10% of men have a red-green colour weakness and have difficulty
distinguishing positive and negative values.

3.4 Spatial data

Spatial data is data associated with locations; points, lines and polygons. This section focusses on the most
challenging visualisation problem: visualising data associated with polygons. This is a challenge because



the two most easily compared attributes (x and y position) are already taken. There are two popular basic
approaches: fill each polygon with texture or colour, or distort the polygon so that its area is proportional to
its value.

Figure [8| shows two choropleth maps, where colour is mapped to value, here state population. The left
plot is unclassed, with population is mapped to a continuous colour palette. This can make patterns difficult
to discern for highly skewed distributions (like population). An alternative, shown on the right, is the classed
choropleth, where value is binned prior to plotting. As with the histogram, there are many ways to bin the
data, but a good rule of thumb is to bin the data into 5-9 categories each containing approximately the same
number of observations. [4] performs a thorough literature review and user evaluation to justify this choice.
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Figure 8: (Left) An unclassed choropleth map. (Right) A classed choropleth map with six classes, each containing
approximately the same number of observations.

A problem with choropleth maps is that polygons with small areas are hard to see, regardless of how
extreme their value is [22]. This is particularly problematic because small geopolitical areas often have
high population densities. This problem is well illustrated in the US: the states in Pacific Northeast are
small with large populations, while states adjacent to the Rockies have larger areas and small populations.
Breaking into smaller divisions often doesn’t help either: zip codes, for example, were designed to contain
approximately equal numbers of people. Gastner et al. [21]] provides a good discussion of how these issues
relate to understanding the US presidential elections.

One variation of the choropleth is the dot density map, shown in Figure [9} where each polygon is filled
with of randomly placed dots, with the number of dots proportional to the value. This requires careful choice
of number and size of dots but can be an effective display. Note that the reader must be cautioned that an
individual dot doesn’t mean anything: it’s the density of dots within a region that conveys information.
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Figure 9: A dot density plot. Each dot represents 200,000 people.



An alternative approach altogether is the cartogram where each polygon is distorted so that its area is
proportional to the desired value. Figure[10|shows two simple examples. The left figure is a non-contiguous
cartogram [34] where each state has been resized so its area is proportional to its population. The right
figure replaces the irregular state polygons with circles, and is a step towards a Dorling cartogram [14],
which also requires repositioning of locations to avoid overlaps and recreate the original connectedness as
much as possible. These two graphics shows the central tradeoff of cartograms: making areas easier to
compare tends to make the spatial context less recognisable.
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Figure 10: (Left) A non-contiguous cartogram, with states sized according to their population. (Right) Arbitrary areas
are difficult to compare, so each state is replaced by a circle located at the state’s center.

There are many other types of cartograms; Dorling [[15] and Tobler [42] provide good summaries from
a cartographic perspective. Other interesting work has been coming out of computer science visualisation
communities, such as the constraint based approach of House and Kocmoud [30], or the diffusion based
approach of Gastner and Newman [20]].

3.5 The grammar of graphics

To do more than understand graphics as a collection of special forms, it’s necessary to divine some underlying
order, and start to understand graphics as combinations of interdependent components. This process was
started in Bertin’s semiology of graphics in 1967 [2] (but was not translated to English until 1983 [3]]), and
made extensive, rigorous and backed up by software in the “grammar of graphics” [48,[49]. It was enhanced
in [45] [46] and coupled with an open-source implementation (used to make the majority of graphics in this
article).

Bertin’s semilogy and Wilkinson’s grammar are useful because they transition from a typology of named
graphics to a richer theory that helps to “bring together in a coherent way things that previously appeared
unrelated and which also will provide a basis for dealing systematically with new situations” [12]]. They
provide a framework that makes it easier to describe and reason about graphics, and with computational
support, make it easier to go from plots in your head to plots on the page. You think about how your data
will be represented visually, then describe that representation using a declarative language. The declarative
language, or grammar, provides a set of independent building blocks, similar to nouns and verbs, that allow
you to build up a plot piece by piece. You focus on describing what you want, leaving it up to the software
to draw the plot.

Figure 11| demonstrates one small insight gained from the grammar of graphics: polar coordinates turns
stacked bar plots (or spine plots) into pie charts and bullseye charts.
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Figure 11: (Left) A stacked barchart showing the distribution of happiness. (Middle) A pie chart: the bar chart in polar
coordinates with # mapped to z. (Right) A “bullseye” chart: the bar chart in polar coordinates with # mapped to y. Key:
very happy, pretty happy, = not too happy
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