Tidy data \& tidy tools Hadley Wickham

Assistant Professor / Dobelman Family Junior Chair
Department of Statistics / Rice University

1. What is tidy data?
2. Data tidying (3/5)
3. Tidy tools
4. Case study

What is tidy data?

- Data that makes data analysis easy
- Data that is easy to model, visualise and transform.
- A step along the road to clean data.
- Relational database theory for statisticians

There are three variables in this data set. What are they?

pregnant	sex	freq
no	female	4
no	male	5
yes	female	1
yes	male	0

Storage	Meaning
Table / File	Data set
Rows	Observations
Columns	Variables

Causes of messiness

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of experimental unit stored in the same table
- One type of experimental unit stored in multiple tables

\# Tools

library(reshape2)
?melt
?dcast
library(stringr) \# regular expressions
?str_replace
?str_sub
?str_match
?str_split_fixed
library(plyr) \# optional, but nice
?arrange

Column headers values, not variable names

	religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
1	Agnostic	27	34	60	81	76	137
2	Atheist	12	27	37	52	35	70
3	Buddhist	27	21	30	34	33	58
4	Catholic	418	617	732	670	638	1116
5	Don't know/refused	15	14	15	11	10	35
6	Evangelical Prot	575	869	1064	982	881	1486
7	Hindu	1	9	7	9	11	34
8	Historically Black Prot	228	244	236	238	197	223
9	Jehovah's Witness	20	27	24	24	21	30
10	Jewish	19	19	25	25	30	95
11	Mainline Prot	289	495	619	655	651	1107
12	Mormon	29	40	48	51	56	112
13	Muslim	6	7	9	10	9	23
14	Orthodox	13	17	23	32	32	47
15	Other Christian	9	7	11	13	13	14
16	Other Faiths	20	33	40	46	49	63
17	Other World Religions	5	2	3	4	2	7
18	Unaffiliated	217	299	374	365	341	528

	religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
1	Agnostic	27	34	60	81	76	137
2	Atheist	12	27	37	52	35	70
3	Buddhist	27	21	30	34	33	58
4	Catholic	418	617	732	670	638	1116
5	Don't know/refused	15	14	15	11	10	35
6	Evangelical Prot	575	869	1064	982	881	1486
7	Hindu	1	9	7	9	11	34
8	Historically Black Prot	228	244	236	238	197	223
9	Jehovah's Witness	20	27	24	24	21	30
10	Jewish	19	19	25	25	30	95
11	Mainline Prot	289	495	619	655	651	1107
12	Mormon	29	40	48	51	56	112
13	Muslim	6	7	9	10	9	23
14	Orthodox	13	17	23	32	32	47
15	Other Christian	9	7	11	13	13	14
16	Other Faiths	20	33	40	46	49	63
17	Other World Religions	5	2	3	4	2	7

raw <- read.delim("pew.txt", check.names = F, stringsAsFactors = F)
\# Fixing this problem is easy. We use melt, from \# reshape2, with two arguments, the input data, and \# the columns which are already variables:
library(reshape2)
tidy <- melt(raw, "religion")
head(tidy)
\# We can now tweak the variable names names(tidy) <- c("religion", "income", "n")

	religion	income	n		religion	income	n
1	Agnostic	<\$10k	27	26	Historically Black Prot	\$10-20k	244
2	Atheist	<\$10k	12	27	Jehovah's Witness	\$10-20k	27
3	Buddhist	<\$10k	27	28	Jewish	\$10-20k	19
4	Catholic	<\$10k	418	29	Mainline Prot	\$10-20k	495
5	Don't know/refused	<\$10k	15	30	Mormon	\$10-20k	40
6	Evangelical Prot	<\$10k	575	31	Muslim	\$10-20k	7
7	Hindu	<\$10k	1	32	Orthodox	\$10-20k	17
8	Historically Black Prot	<\$10k	228	33	Other Christian	\$10-20k	7
9	Jehovah's Witness	<\$10k	20	34	Other Faiths	\$10-20k	33
10	Jewish	<\$10k	19	35	Other World Religions	\$10-20k	2
11	Mainline Prot	<\$10k	289	36	Unaffiliated	\$10-20k	299
12	Mormon	<\$10k	29	37	Agnostic	\$20-30k	60
13	Muslim	<\$10k	6	38	Atheist	\$20-30k	37
14	Orthodox	<\$10k	13	39	Buddhist	\$20-30k	30
15	Other Christian	<\$10k	9	40	Catholic	\$20-30k	732
16	Other Faiths	<\$10k	20	41	Don't know/refused	\$20-30k	15
17	Other World Religions	<\$10k	5	42	Evangelical Prot	\$20-30k	1064
18	Unaffiliated	<\$10k	217	43	Hindu	\$20-30k	7
19	Agnostic	\$10-20k	34	44	Historically Black Prot	\$20-30k	236
20	Atheist	\$10-20k	27	45	Jehovah's Witness	\$20-30k	24
21	Buddhist	\$10-20k	21	46	Jewish	\$20-30k	25
22	Catholic	\$10-20k	617	47	Mainline Prot	\$20-30k	619
23	Don't know/refused	\$10-20k	14	48	Mormon	\$20-30k	48
24	Evangelical Prot	\$10-20k	869	49	Muslim	\$20-30k	9
25	Hindu	\$10-20k	9	50	Orthodox	\$20-30k	23

Multiple variables in one column

iso2 year m04 m514 m014 m1524 m2534 m3544 m4554 m5564 m65 mu f04 f514 f014 1 AD 1989 NA 2 AD 1990 NA 3 AD 1991 NA 4 AD 1992 NA 5 AD 1993 NA 6 AD 1994 NA $7 \begin{array}{llllllllllllll} & A D & 1996 & N A & N A & 0 & 0 & 0 & 4 & 1 & 0 & 0 & N A & N A \\ N A & 0\end{array}$ $\begin{array}{rrrllllllllllr}8 & \text { AD } 1997 & \text { NA } & \text { NA } & 0 & 0 & 1 & 2 & 2 & 1 & 6 & \text { NA } & \text { NA } & \text { NA } \\ 9 & \text { AD } 1998 & \text { NA } & \text { NA } & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \text { NA } & \text { NA } & \text { NA } \\ \text { NA }\end{array}$
10 AD 1999 NA NA $0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad N A$
11 AD 2000 NA NA $0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ NA NA NA NA
12 AD 2001 NA NA 0 NA NA $2 \quad 1 \quad$ NA NA NA NA NA NA
13 AD 2002 NA NA $0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0$ NA NA
14 AD 2003 NA NA $0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 2 \quad 0 \quad 0$ NA NA

15 | | AD 2004 | NA | NA | 0 | 0 | 0 | 1 | 1 | 0 | 0 | $N A$ | $N A$ | $N A$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

16	AD 2005	0	0	0	0	1	1	0	0	0	0	0	0
17	AD	2006	0	0	0	1	1	2	0	1	1	0	0
0	0												

18 AD 2007 NA NA

19 | $A D$ | 2008 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

20 AE 1980 NA NA
iso2 year m04 m514 m014 m1524 m2534 m3544 m4554 m5564 m65 mu f04 f514 f014

1	AD 1989	NA												
2	AD 1990	NA												
3	AD 1991	NA												
4	AD 1992	NA												
5	AD 1993	NA												
6	AD 1994	NA												
7	AD 1996	NA	NA	0	0	0	4	1	0	0	NA	NA	NA	0
8	AD 1997	NA	NA	0	0	1	2	2	1	6	NA	NA	NA	0
9	AD 1998	NA	NA	0	0	0	1	0	0	0	NA	NA	NA	NA
10	AD 1999	NA	NA	0	0	0	1	1	0	0	NA	NA	NA	0
11	AD 2000	NA	NA	0	0	1	0	0	0	0	NA	NA	NA	NA
12	AD 2001	NA	NA	0	NA	NA	2	1	NA	NA	NA	NA	NA	NA
13	AD 2002	NA	NA	0	0	0	1	0	0	0	NA	NA	NA	0
14	AD 2003	NA	NA	0	0	0	1	2	0	0	NA	NA	NA	0
15	AD 2004	NA	NA	0	0	0	1	1	0	0	NA	NA	NA	0
16	AD 2005	0	0	0	0	1	1	0	0	0	0	0	0	0
17	AD 2006	0	0	0	1	1	2	0	1	1	0	0	0	0
18	AD 2007	NA	Ns	NA	N/	N/	Na	N 1	NA	N/	N/ ${ }^{\text {a }}$	NA	NA	NA

20 AE 1980 \# Discuss with your neighbour for 1 minute \# Hint: f = female, u = unknown, 1524 = 15-25
raw <- read.csv("tb.csv", stringsAsFactors = FALSE) raw\$new_sp <- NULL
names(raw) <- str_replace(names(raw), "new_sp_", "")
\# na.rm = TRUE is useful if the missings don't have \# any meaning
tidy <- melt(raw, id = c("iso2", "year"),
na.rm = TRUE)
names(tidy)[4] <- "cases"
\# Often a good idea to ensure the rows are ordered \# by the variables
tidy <- arrange(tidy, iso2, variable, year)

iso2 year variable cases			
26	AD 2004	m1524	0
27	AD 2005	m 1524	0
28	AD 2006	m 1524	1
29	AD 2008	m 1524	0
30	AD 1996	m 2534	0
31	AD 1997	m 2534	1
32	AD 1998	m 2534	0
33	AD 1999	m 2534	0
34	AD 2000	m 2534	1
35	AD 2002	m 2534	0
36	AD 2003	m 2534	0
37	AD 2004	m 2534	0
38	AD 2005	m 2534	1
39	AD 2006	m 2534	1
40	AD 2008	m 2534	0
41	AD 1996	m 3544	4
42	AD 1997	m 3544	2
43	AD 1998	m 3544	1
44	AD 1999	m 3544	1
45	AD 2000	m 3544	0
46	AD 2001	m 3544	2
47	AD 2002	m 3544	1
48	AD 2003	m 3544	1
49	AD 2004	m 3544	1
50	AD 2005	m 3544	1

str_sub(tidy\$variable, 1, 1)
str_sub(tidy\$variable, 2)
ages <- c $(" 04 "=" 0-4 ", \quad " 514 "=" 5-14 "$,

$$
\begin{aligned}
& " 014 "=" 0-14 ", \quad " 1524 "=" 15-24 ", \quad " 2534 "=" 25-34 ", \\
& " 3544 "=" 35-44 ", " 4554 "=" 45-54 ", \quad " 5564 "=" 55-64 ", \\
& " 65 "=" 65+", \quad " u "=N A)
\end{aligned}
$$

ages[str_sub(tidy\$variable, 2)]
tidy\$sex <- str_sub(tidy\$variable, 1, 1)
tidy\$age <- factor(ages[str_sub(tidy\$variable, 2)], levels = ages)
tidy\$variable <- NULL
tidy <- tidy[c("iso2", "year", "sex", "age", "cases")]

iso2 year sex			
26	AD	2004	m 15-24
27	AD	2005	m 15-24
28	AD	2006	m 15-24
29	AD	2008	m 15-24
30	AD	1996	m 25-34
31	AD	1997	m 25-34
32	AD	1998	m 25-34
33	AD	1999	m 25-34
34	AD	2000	m 25-34
35	AD	2002	m 25-34
36	AD	2003	m 25-34
37	AD	2004	m 25-34
38	AD	2005	m 25-34
39	AD	2006	m 25-34
40	AD	2008	m 25-34
41	AD	1996	m 35-44
42	AD	1997	m 35-44
43	AD	1998	m 35-44
44	AD	1999	m 35-44
45	AD	2000	m 35-44
46	AD	2001	m 35-44
47	AD	2002	m 35-44
48	AD	2003	m 35-44
49	AD	2004	m 35-44
50	AD	2005	m 35-44

Variables in rows and columns

id year month element d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

	MX000017004	2010	1	TMAX	NA NA	NA	NA	NA							
2	MX000017004	2010	1	TMIN	NA NA	NA	NA	NA							
3	MX000017004	2010	2	TMAX	NA	273	241	NA	NA	NA	NA	NA NA	NA	297	NA
4	MX000017004	2010	2	TMIN	NA	144	144	NA	NA	NA	NA	NA NA	NA	134	NA
5	MX000017004	2010	3	TMAX	NA	NA	NA	NA	321	NA	NA	NA NA	345	NA	NA
6	MX000017004	2010	3	TMIN	NA	NA	NA	NA	142	NA	NA	NA NA	168	NA	NA
7	MX000017004	2010	4	TMAX	NA NA	NA	NA	NA							
8	MX000017004	2010	4	TMIN	NA NA	NA	NA	NA							
9	MX000017004	2010	5	TMAX	NA NA	NA	NA								
10	MX000017004	2010	5	TMIN	NA NA	NA	NA								
11	MX000017004	2010	6	TMAX	NA NA	NA	NA								
12	MX000017004	2010	6	TMIN	NA NA	NA	NA								
13	MX000017004	2010	7	TMAX	NA	NA	286	NA	NA	NA	NA	NA NA	NA	NA	
14	MX000017004	2010	7	TMIN	NA	NA	175	NA	NA	NA	NA	NA NA	NA	NA	
15	MX000017004	2010	8	TMAX	NA	NA	NA	NA	296	NA	NA	290 NA	NA	NA	NA
16	MX000017004	2010	8	TMIN	NA	NA	NA	NA	158	NA	NA	173 NA	NA	NA	NA
17	MX000017004	2010	10	TMAX	NA	NA	NA	NA	270	NA	281	NA NA	NA	NA	NA
18	MX000017004	2010	10	TMIN	NA	NA	NA	NA	140	NA	129	NA NA	NA	NA	NA
19	MX000017004	2010	11	TMAX	NA	313	NA	272	263	NA	NA	NA NA	NA	NA	

id year month element d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

	MX000017004	2010	1	TMAX	NA											
2	MX000017004	2010	1	TMIN	NA											
3	MX000017004	2010	2	TMAX	NA	273	241	NA	297	NA						
4	MX000017004	2010	2	TMIN	NA	144	144	NA	134	NA						
5	MX000017004	2010	3	TMAX	NA	NA	NA	NA	321	NA	NA	NA	NA	345	NA	NA
6	MX000017004	2010	3	TMIN	NA	NA	NA	NA	142	NA	NA	NA	NA	168	NA	NA
7	MX000017004	2010	4	TMAX	NA											
8	MX000017004	2010	4	TMIN	NA											
9	MX000017004	2010	5	TMAX	NA											
10	MX000017004	2010	5	TMIN	NA											
11	MX000017004	2010	6	TMAX	NA											
12	MX000017004	2010	6	TMIN	NA											
13	MX000017004	2010	7	TMAX	NA	NA	286	NA								
14	MX000017004	2010	7	TMIN	NA	NA	175	NA								
15	MX000017004	2010	8	TMAX	NA	NA	NA	NA	296	NA	NA	290	NA	NA	NA	NA
16	MX000017004	2010	8	TMIN	NA	NA	NA	NA	158	NA	NA	173	NA	NA	NA	NA

19 Mx000017004 201\# Discuss with your neighbour for 1 minute 20 Mx000017004 201\# Hint: TMIN = minimum temperature,
\# id = weather station identifier
raw <- read.table("weather.txt", stringsAsFactors = FALSE)
raw1 <- melt(raw, id = 1:4, na.rm = T)
raw1\$day <- as.integer (
str_replace(raw1\$variable, "d", ""))
raw1\$variable <- NULL
raw1\$element <- tolower (raw1\$element)
raw1 <- raw1[c("id", "year", "month", "day",
"element", "value")]
raw1 <- arrange(raw1, year, month, day, element)
id year month day element value

1	MX000017004	2010	1	30	tmax	278
2	MX000017004	2010	1	30	tmin	145
3	MX000017004	2010	2	2	tmax	273
4	MX000017004	2010	2	2	tmin	144
5	MX000017004	2010	2	3	tmax	241
6	MX000017004	2010	2	3	tmin	144
7	MX000017004	2010	2	11	tmax	297
8	MX000017004	2010	2	11	tmin	134
9	MX000017004	2010	2	23	tmax	299
10	MX000017004	2010	2	23	tmin	107
11	MX000017004	2010	3	5	tmax	321
12	MX000017004	2010	3	5	tmin	142
13	MX000017004	2010	3	10	tmax	345
14	MX000017004	2010	3	10	tmin	168
15	MX000017004	2010	3	16	tmax	311
16	MX000017004	2010	3	16	tmin	176
17	MX000017004	2010	4	27	tmax	363
18	MX000017004	2010	4	27	tmin	167
19	MX000017004	2010	5	27	tmax	332
20	MX000017004	2010	5	27	tmin	182

\# dcast shifts variables from rows to columns tidy <- dcast(raw1, ... ~ element)
\# casting syntax:
\# row_var1 + row_var2 ~ col_var1 + col_var2
\# ... = all variables not otherwise mentioned
id year month day tmax tmin

1	MX000017004	2010	1	30	278	145
2	MX000017004	2010	2	2	273	144
3	MX000017004	2010	2	3	241	144
4	MX000017004	2010	2	11	297	134
5	MX000017004	2010	2	23	299	107
6	MX000017004	2010	3	5	321	142
7	MX000017004	2010	3	10	345	168
8	MX000017004	2010	3	16	311	176
9	MX000017004	2010	4	27	363	167
10	MX000017004	2010	5	27	332	182
11	MX000017004	2010	6	17	280	175
12	MX000017004	2010	6	29	301	180
13	MX000017004	2010	7	3	286	175
14	MX000017004	2010	7	14	299	165
15	MX000017004	2010	8	5	296	158
16	MX000017004	2010	8	8	290	173
17	MX000017004	2010	8	13	298	165
18	MX000017004	2010	8	23	264	150
19	MX000017004	2010	8	25	297	156
20	MX000017004	2010	8	29	280	153
21	MX000017004	2010	8	31	254	154
22	MX000017004	2010	10	5	270	140
23	MX000017004	2010	10	7	281	129
24	MX000017004	2010	10	14	295	130
25	MX000017004	2010	10	15	287	105

HPey tools

Tidy tools

Now we have our data in a tidy format, what can we do with it?

Tidy tools work input and output tidy data, and avoid data restructuring during an analysis.

Visualise

Transform

Function	Reason
table()	Returns an array
by ()	Returns a list
coef(summary ())	Returns a matrix with row names
matplot()	Inputs a matrix

hod2 <- count(deaths, c("cod", "hod"))
hod2 <- subset(hod2, !is.na(hod))
hod2 <- join(hod2, codes)
hod2 <- ddply(hod2, "cod", transform, prop $=$ freq / sum(freq))
\# Compare to overall abundance overall <- ddply(hod2, "hod", summarise, freq_all = sum(freq))
overall <- mutate(overall, prop_all = freq_all / sum(freq_all))
hod2 <- join(overall, hod2, by = "hod")
cod hod
disease freq prop freq_all prop_all
1 A01 1 Typhoid and paratyphoid\nfevers
2 A01 2 Typhoid and paratyphoid\nfevers
3 A01 3 Typhoid and paratyphoid\nfevers
4 A01 5 Typhoid and paratyphoid\nfevers
5 A01 6 Typhoid and paratyphoid\nfevers
6 A01 8 Typhoid and paratyphoid\nfevers
7 A01 10 Typhoid and paratyphoid\nfevers
8 A01 11 Typhoid and paratyphoid\nfevers
9 A01 12 Typhoid and paratyphoid\nfevers
10 A01 13 Typhoid and paratyphoid $\backslash n f e v e r s$
11 A01 14 Typhoid and paratyphoid\nfevers
12 A01 15 Typhoid and paratyphoid $\backslash n f e v e r s$
13 A01 17 Typhoid and paratyphoid\nfevers
14 A01 18 Typhoid and paratyphoid\nfevers
15 A01 19 Typhoid and paratyphoid\nfevers
16 A01 20 Typhoid and paratyphoid $\backslash n f e v e r s$
17 A01 21 Typhoid and paratyphoid $\backslash n f e v e r s$
18 A01 22 Typhoid and paratyphoid\nfevers
19 A01 23 Typhoid and paratyphoid\nfevers

3	0.0577	20430	0.0398
1	0.0192	18962	0.0369
4	0.0769	19729	0.0384
5	0.0962	22126	0.0431
1	0.0192	23787	0.0463
1	0.0192	21915	0.0427
2	0.0385	24321	0.0474
2	0.0385	23843	0.0465
1	0.0192	23392	0.0456
6	0.1154	23284	0.0454
4	0.0769	23053	0.0449
5	0.0962	23278	0.0454
3	0.0577	23625	0.0460
2	0.0385	24380	0.0475
3	0.0577	22919	0.0447
3	0.0577	22926	0.0447
2	0.0385	20995	0.0409
3	0.0577	20510	0.0400
1	0.0192	21446	0.0418

devi <- ddply(hod2, "cod", summarise, $n=$ sum(freq), dist $=$ mean $(($ prop - prop_all)^2)) devi <- subset(devi, n > 50)
qplot(n, dist, data = devi)


```
qplot(n, dist, data = devi) +
    geom_smooth(method = "rlm", se = F) +
    xlog10 +
    ylog10
xlog10 <- scale_x_log10(
    breaks = c(100, 1000, 10000),
    labels = c(100, 1000, 10000),
    minor_breaks = outer(1:9, 10^(1:5), "*"))
ylog10 <- scale_y_log10(
    breaks = 10 ^ -c(3, 4, 5),
    labels = c("0.001", "0.0001", "0.00001"),
    minor_breaks = outer(1:9, 10^-(3:6), "*"))
```


devi\$resid <- resid(rlm(log(dist) ~ $\log (n)$, data = devi))
ggplot(devi, aes(n, resid)) + geom_hline(yintercept = 1.5, colour = "grey50") + geom_point() +
xlog10


```
unusual <- subset(devi, resid > 1.5)
hod_unusual_big <- match_df(hod2, subset(unusual, n > 350))
hod_unusual_sml <- match_df(hod2, subset(unusual, n <= 350))
# Visualise unusual causes of death
ggplot(hod_unusual_big, aes(hod, prop)) +
    geom_line(aes(y = prop_all), data = overall, colour = "grey50") +
    geom_line() +
    facet_wrap(~ disease, ncol = 3)
```


Summary

The framework of tidy data makes it easier to get data in a useful form for analysis and provides a useful framework for critiquing existing functions.

Surprisingly few tools needed to tidy messy data.

Future work

Data structure also affects how we think about problem statistically:

Multivariate models use matrices
Paired t-test vs. mixed effect model

```
library(lme4); set.seed(1001)
x <- rnorm(10, 20, 1)
df <- data.frame(
    id = 1:10,
    x = x,
    y = x + rnorm(10, 2, 1))
# Paired t-test directly
t1 <- with(df, t.test(x, y, paired = TRUE))
# With mixed model (courtesy of Ben Bolker)
dfm <- melt(df, "id")
m1 <- lmer(value ~ variable + (1 | id), data = dfm, REML = T)
all.equal(
    abs(t1$statistic),
    coef(summary(m1))["variabley","t value"])
```

http://vita.had.co.nz/papers.html http://vita.had.co.nz/presentations.html

