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Fig. 1. Average delay (colour, in minutes) as a function of distance (x axis, in miles) and speed (y axis, in mph) for 76 million flights.
The initial view (left) needs refinement to be useful: first we focus on the middle 99.5% of the data (centre) then transform average
delay to shrink the impact of unusually high delays and focus on typical values (right). Flights with higher than average speeds (top-
right) have shorter delays (red); more interestingly, a subset of shorter, slower flights (bottom-left) have average delays very close to
0 (white).

Abstract—
Visualising large data is challenging both perceptually and computationally: it is hard to know what to display and hard to efficiently
display it once you know what you want. This paper proposes a framework that tackles both problems, based around a four step
process of bin, summarise, smooth, and visualise. Binning and summarising efficiently (O(n)) condense the large raw data into a form
suitable for display (recognising that there are ∼3 million pixels on a screen). Smoothing helps resolve problems from binning and
summarising, and because it works on smaller, condensed datasets, it can make use of algorithms that are more statistically efficient
even if computationally expensive. The paper is accompanied by a single-core in-memory reference implementation, and is readily
extensible with parallel and out-of-memory techniques.

Index Terms—Big data, statistical graphics, kernel smoothing.

1 INTRODUCTION

As data grows ever larger, it is important that our ability to visualise
it grows too. This paper presents a novel framework for visualising
large data that is designed to be both computationally and statistically
efficient, dealing with both the challenges of what to display for very
large datasets and how to display it fast enough for interactive explo-
ration. The insight that underlies this work is simple: the bottleneck
when visualising large datasets is the number of pixels on a screen. At
most we have around 3,000,000 pixels to use, and 1d summaries need
only around 3,000 pixels. There is no point displaying more data than
pixels, and rather than relying on the rendering engine to intelligently
reduce the data, we develop summaries built on well-known statistical
principles.

My work in R supplies many of the constraints that have guided
this paper. The accompanying reference implementation is designed
to be used by experienced analysts in conjunction with other data ma-
nipulation tools and statistical models. My goal was for users to be
able to plot 108 observations in under 5s on commodity hardware. 108

doubles occupy a little less than 800 Mb, so about 20 vectors can be
stored in 16 Gb of ram, with about 1 Gb left over. Five seconds is well
above the threshold for direct manipulation, but is in line with how
long other data manipulation and modelling functions take in R. Too
much longer than 5s and it becomes tempting to give up waiting and
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switch to another task, which breaks flow and reduces productivity. To
calibrate, 5s is about how long it takes to draw a regular scatterplot of
200,000 points in R, so I aim to be several orders of magnitude faster
than existing work.

The framework involves four steps: binning, summarising, smooth-
ing and visualising. Binning and summarising condense the large
raw data to a summary on the same order of size as pixels on the
screen. To be computational efficient, binning and summarising make
some statistical sacrifices, but these can be compensated for with the
smoothing step. Smoothing is generally computationally harder, but
smoothing condensed data is fast and loses little statistical strength.
The bin-summarise-smooth framework encompasses the most impor-
tant 1d and 2d statistical graphics: histograms, frequency polygons
and kernel density estimates (kdes) for 1d; and scatterplots, scatterplot
smoothers and boxplots for 2d. It is readily extensible to new visuali-
sations that use other summaries.

Section 3 discusses binning and summarising, focussing on the ten-
sion between computation and statistical concerns. Computationally,
we want linear complexity and the ability to parallelise, but statisti-
cally, we want summaries that are resistant to unusual values. Sec-
tion 4 discusses smoothing, focussing more on the statistical side, and
shows how we can remedy some of the problems generated by the fast
binning and summarising steps. Even once we’ve reduced the data
to manageable size, visualisation of large data presents some special
challenges. Section 5 discusses generally how to visualise the con-
densed datasets, and how to overcome problems with the outliers that
are always present in large data.

The paper is accompanied by an open-source reference implemen-
tation in the form of the bigvis R [38] package. This is available
from http://github.com/hadley/bigvis and is described
in Section 6. The reference implementation focusses on in-memory,

http://github.com/hadley/bigvis


single-core summaries of continuous data with an eye to producing
static graphics. But these are not limitations of the framework, and I
discuss avenues for future work in Section 7.

To illustrate the framework I include figures generated from the
flight on-time performance data made available by the Bureau of
Transportation Statistics1. I use flight performance data for all do-
mestic US flights from 2000 to 2011: ∼78,000,000 flights in total.
The complete dataset has 111 variables, but here we will explore just
four: the flight distance (in miles), elapsed time (in minutes), aver-
age speed (in mph) and the arrival delay (in minutes). The data was
mildly cleaned: negative times, speeds greater than 761 mph (the
speed of sound), and distances greater than 2724 miles (the longest
flight in the continental US, SEA–MIA) were replaced with missing
values. This affected ∼1.8 million (2.4%) rows. The data, and code,
needed to reproduce this paper and accompanying figures can be found
at http://github.com/hadley/bigvis.

2 RELATED WORK

There is an extensive body of statistical research on kernel density
estimation (kde, aka smoothed histograms) and smoothing, stretching
back to the early 70’s. Three good summaries of the work are [43, 4,
35]. [21, 49, 16] focus on the computational side, where much work
occurred in the early 90’s as statisticians transitioned their algorithms
from mainframes to PCs. This work focusses mostly on the statistical
challenges (asymptotic analysis), and is framed in the context of big
data challenges of the time (1000s of points).

The statistical smoothing literature has had relatively little impact
on infovis. [32] uses kernel density estimates, and provides a very fast
GPU-based implementation, but fails to connect to the existing statis-
tics literature and thus reinvents the wheel. Other techniques from
infovis—footprint splatting [1, 57] and using transparency to deal with
overplotting [26, 47]—can be framed as kernel density problems.

There are other approaches to large data: [22] discusses the general
challenges, and proposes interaction as a general solution. Others have
used distortion [29] or sampling [50, 3]. Distortion breaks down with
high data density, as low density regions may be distant and the under-
lying spatial relationships become severely distorted. Sampling can be
effective, particularly if non-uniform methods are used to overweight
unusual values, but to have confidence in the final results you must
either look at multiple plots or very careful select tuning parameters.

[34] describes a strikingly similar framework to this paper, moti-
vated by interactive web graphics for large data. It is complimentary
to the bin-summarise-smooth framework: it focusses on interaction
and high-performance parallel GPU computation within the browser,
but does not explore summaries other than count, or explore the im-
portance of a smoothing step.

3 CONDENSE

The bin and summary steps condense the large original dataset into
a smaller set of binned summaries. Figure 2 illustrates the principle
with the distance variable. Each flight is put in one of 237 10-mile-
wide bins, then each bin is collapsed to three summaries: the count,
the average speed, and the standard deviation of the speed. In general,
this process involves first assigning each observation to an integer bin,
as described in Section 3.1; then reducing all observations in a bin to
a handful of summary statistics, as described in Section 3.2.

3.1 Bin

Binning is an injective mapping from the real numbers to a fixed and
finite set of integers. We use fixed width binning, which is extremely
fast, easily extended from 1d to nd, and while statistically naı̈ve, there
is little evidence that variable binwidths do better.

Binning needs to be considered as a separate step, as it may be per-
formed outside of the visualisation environment. For example, binning
could be done in the database, reducing data transmission costs by half
since integers need only 4 bits of storage, while doubles need 8.

1http://transtats.bts.gov/Fields.asp?Table_ID=236
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Fig. 2. Distance binned into 273 10-mile-wide bins, summarised with
count, mean speed and standard deviation of speed. Note the varying
scales on the y-axis, and the breaks in the line at extreme distances
caused by missing data.

3.1.1 Computation
Fixed width binning is parametrised by two variables, the origin (the
position of the first bin) and the width. The computation is simple:⌊

x−origin
width

⌋
+1 (1)

Bins are 1-indexed, reserving bin 0 for missing values and values
smaller than the origin.

3.1.2 Extension to nd
Fixed width binning can be easily extended to multiple dimen-
sions. You first bin each dimension, producing a vector of integers
(x1,x2, ...,xm). It is then straightforward to devise a bijective map be-
tween this vector and a single integer, given that we know the largest
bin in each dimension. If we have m dimensions, each taking possible
values 0,1, . . . ,nm, then we can collapse the vector of integers into a
single integer using this formula:

= x1 + x2 ·n1 + x3 ·n1 ·n2 + · · ·+ xm ·Πn−1
i=1 ni

= x1 +n1 · (x2 +n2 · (x3 + · · ·(xm))
(2)

It is easy to see how this works if each dimension has ten bins. For
example, to project 3d bin (5,0,4) into 1d, we compute 5+0 ·10+4 ·
100 = 4+ 10 · (0+ 10 · 5) = 405. Given a single integer, we can find
the vector of m original bins by reversing the transformation, peeling
off the integer remainder after dividing by 10. For example, 1d bin
356 corresponds to 3d bin (6,5,3).

This function is a monotone minimal perfect hash, and highly effi-
cient hashmap variants are available that make use of its special prop-
erties [2]. For example, because the hash is perfect, we can eliminate
the equality comparison that is usually needed after a candidate has
been found with the hashed value. Even if this data structure is not
used (as in the reference implementation), it easy to efficiently sum-
marise bins in high-dimensions using standard data structures: a vector
if most bins have data in them, a hashmap if not.

The challenges of working with nd summaries are typically per-
ceptual, rather than computational. Figure 3 shows a 2d summary of
distance and speed: even moving from 1d to 2d makes it significantly
harder to accurately perceive count [11].

http://github.com/hadley/bigvis
http://transtats.bts.gov/Fields.asp?Table_ID=236
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Fig. 3. Distance and speed summarised with count. Note that count
scale has been transformed slightly, as described in Section 5.3.2, to
draw attention to regions with fewer counts.

3.1.3 Statistical limitations
Ideally, we would like bigger bins in regions with few data points be-
cause the error of the summary is typically Θ(1/

√
n). For example, in

Figure 2 we would like to have bigger bins for larger distances since
the counts are small and the estimates of mean and standard deviation
are more variable than we would like. However, there is little evidence
that varying binwidths leads to asymptotically lower error [46]. Vary-
ing bin widths should provide a better approximation to the underlying
data, but the optimisation problem is so much more challenging that
any potential improvements are lost. Instead of resolving these issues
with a more sophisticated binning algorithm, we will fix them in the
later smoothing step.

3.2 Summarise
Once each of the n original data points has been placed into one of
m integer bins (m� n), the next step is to collapse the points in each
bin into a small number of summary statistics. Picking useful sum-
mary statistics requires balancing between computational efficiency
and statistical robustness.

3.2.1 Computational efficiency
Gray et al. [19] provide a useful classification for summary statistics.
A summary is:

• distributive if it can be computed using a single element of in-
terim storage and summaries from subgroups can be combined.
This includes count, sum, min, and max.

• algebraic if it is a combination of a fixed number of distributive
statistics. This includes the mean (count + sum), standard devi-
ation (count + sum + sum of squares) and higher moments like
skewness and kurtosis.

• holistic if it requires interim storage that grows with the input
data. This includes quantiles (like the median), count of distinct
elements or the most common value.

Algebraic and distributive statistics are important because results
from subgroups can easily be combined. This has two benefits: it
makes parallelisation trivial, and it supports a tiered approach to ex-
ploration. For example, if you have 100 million observations, you
might first finely bin into 100,000 bins. Then for any specific 1d plot,
you rebin or subset the fine bins rather than the original data. This
tiered approach is particularly useful for interactive visualisations; the

fine binning can be done upfront when the visualisation is created, then
binwidths and plot limits can be modified interactively.

It is often possible to convert a summary from holistic to algebraic
by taking an approximation. For example, the count of distinct values
can be approximated with the hyperloglog algorithm [18], the median
with the remedian [39], and other quantiles with other methods [17,
25, 33]. Others have proposed general methods for approximating any
holistic summary [8].

The mean, standard deviation and higher moments can all be com-
puted in a single pass, taking O(n) time and O(1) memory. Some
care is needed as naive implementations (e.g. computing the variance
as ∑

n
i x2

i /n− (∑n
i xi/n)2) can suffer from severe numerical problems,

but better algorithms are well known [51]. The median also takes O(n)
time (using the quick-select algorithm), but needs O(n) memory: there
is no way to compute the median without storing at least half of the
data, and given the median of two subgroups, no way to compute the
median of the full dataset.

3.2.2 Statistical robustness
There is an interesting tension between the mean and the median: the
median is much more robust to unusual values than the mean, but re-
quires unbounded memory. A useful way to look at the robustness of a
statistic is the breakdown point. The breakdown point of a summary
is the proportion of observations that an attacker needs to control be-
fore they can arbitrarily influence the resulting summary. It is 0 for the
mean: if you can influence one value, you can force the mean to be any
value you like. The breakdown point for the median is 0.5: you have
to taint 50% of the observations before you can arbitrarily change the
median. The mean is computationally desirable, but is less statistically
desirable since just one flawed value can arbitrarily taint the summary.
This is a general problem: the easiest summary statistics to compute
are also the least robust, while robust statistics are usually holistic.

Even if you do use robust statistics, you are only protected from
scattered outliers, not a radical mismatch between the data and the
summary. For example, a single measure of central tendency (mean or
median) will never be a good summary if the data has multiple modes.
Compare Figures 2 and 3: for shorter flights, there appears to be mul-
tiple modes of speed for a given distance and so the mean is not a
good summary. Visualisation must be iterative: you can not collapse
a variable to a single number until you have some confidence that the
summary is not throwing away important information. In practice,
users may need to develop their own summary statistics for the pecu-
liarities of their data; the ones discussed here should provide a good
start for general use.

3.2.3 Higher dimensions
There is no reason to limit ourselves to only 1d summary functions. 2d
summaries like the correlation may also be interesting. All statistics
from a linear model can be computed in O(n) in time and O(1) in
space [37], and thus suggest a fruitful ground for generalisations to
higher dimensions. Other quickly computed 2d summaries are also of
interest; scagnostics [55] are an obvious place to start.

4 SMOOTH

Smoothing is an important step because it allows us to resolve prob-
lems with excessive variability in the summaries. This variability may
arise because the bin size is too small, or because there are unusual
values in the bin. Either way, smoothing makes it possible to use fast
statistics with low breakdown points instead of slow and robust sum-
maries. Figure 4 shows the results of smoothing Figure 2: much of
the small-scale variation has been smoothed away, making it easier to
focus on the broad trends. There is some suggestion that the standard
deviation of speed is lowest for distances of 1000–1500 miles, and
rises for both smaller and large distances. This is much harder to see
in Figure 2.

There are many approaches to smoothing, but we use a family of
kernel based methods, because they:

• are simple and efficient to compute,
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Fig. 4. The same underlying data from Figure 2, but smoothed with a
bandwidth of 50. This removes much of the uninteresting variation while
preserving the main trends.

• have a single parameter, the bandwidth, that controls the amount
of smoothing,

• work just as well when applied to binned data [49],

• are approximately equivalent to other more complicated types of
smoothing [44],

• form the heart of many existing statistical visualisations such as
the kernel density plot [43], average shifted histogram [41] and
loess [9].

Ideally, we would smooth the raw data, but it is too computation-
ally expensive. Smoothing the binned summaries gives results that are
visually very close to smoothing the original data, yet takes much less
time.

4.1 How it works
Figure 5 illustrates the progression of smoothing methods from fast
and crude to sophisticated and slower. The simplest smoothing method
(top) is the binned mean, where we divide the data in bins and com-
pute the mean of each bin. This is simple, but is locally constant and
not very smooth. The next step up in complexity is the running (or
nearest neighbour) mean where we average the five nearest points at
each location. This is a considerable improvement, but is still rather
jagged.

The remaining three types use a simple idea: we want to not only
use the neighbouring points, but we want to weight them according to
their distance from the target point. In statistics, the weighting func-
tion is traditionally called a kernel. There are a huge variety of ker-
nels, but there is little evidence to suggest that the precise form of the
kernel is important [10]. Gaussian kernels are common, but I use the
triweight, K(x) = (1− |x|3)2I|x|<1, because it is bounded and simple
(evaluation of this function is ∼10× faster than the Gaussian).

At each bin i we have xi the centre of the bin; yi, the summary
statistic; and wi, the number of observations in the bin. To predict a
smooth estimate at position j, we first compute the kernel weights for
each location ki =K

(
x j−xi

h

)
. The parameter h is called the bandwidth,

and controls the degree of smoothing: larger h’s include more neigh-
bours and produce a smoother final curve. Because of the form of the
triweight kernel, any observation more than h away from x j will not
contribute to the smoothed value, thus enabling efficient computation.
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Fig. 5. Five types of smoothing on an artificial dataset generated with
sin(x) on [0,π], with random normal noise with σ = 0.2, and an outlier at
π/2. Smooths are arranged from simplest (top, binned) to most accurate
(bottom, robust local regression). To aid comparison each smooth is
shown twice, prominently with a thick black line, and then repeated on
the next plot in red to make comparison easier. The subtlest difference
is between the kernel mean and kernel regression: look closely at the
boundaries.

There are three kernel techniques: kernel means (aka Nadaraya-
Watston smoothing), kernel regression (aka local regression) and ro-
bust kernel regression (aka loess). These make a trade-off between per-
formance and quality. While closely related, these methods developed
in different parts of statistics at different times, and the terminology is
often inconsistent. [10] provides a good historical overview. To com-
pute each smooths, we simply take the standard statistical technique
(mean, regression or robust regression) and apply it to each sample
location with weights wi · ki.

The kernel (weighted) mean is fastest to compute but suffers from
bias on the boundaries, because the neighbours only lie on one side.
The kernel (weighted) regression overcomes this problem by effec-
tively using a first-degree Taylor approximation. In Figure 5, you can
see that the kernel mean and kernel regression are coincident every-
where except near the boundaries. Higher-order approximations can
be used by fitting higher-order polynomials in the model, but there
seems to be little additional benefit in practice [10].

Finally, the robust kernel regression iteratively down-weights the
effect of points far away from the curve, and reduces the impact of
unusual points at the cost of increased computation time (typically the
number of iterations is fixed, so it is a constant factor slower than reg-
ular regression). There are many ways to implement robust regression,
but the procedure used by loess [9] is simple, computational tractable
and performs well in practice. The key advantage of a robust smooth
can be seen in Figure 5: it is the only smoother unaffected by the un-



usually low point at π/2.

4.2 Higher-dimensions and performance

The three kernel techniques are readily extended to higher dimensions:
for example, instead of computing a 1d weighted mean, you com-
pute a nd weighted mean. Kernel means are particularly easy to ef-
ficiently extend to higher dimensions because they are a convolution.
Due to the associative nature of convolution, it is possible to replace
a d-dimensional smooth with a sequence of d 1d smooths. This is an
important optimisation because it converts an O(nd) process to O(nd).
You can also perform kernel regression through a sequence of 1d re-
gressions, but it will only be exact if the underlying grid of values is
uncorrelated. Robust kernel regression can not be approximated in this
way, and must be performed exactly.

Given that the kernel mean is a convolution, it’s natural to wonder
if a discrete fast Fourier transform (dFFT) would be useful. My expe-
rience is that it is not helpful in this case: it requires more complicated
code to deal with the periodic nature of the dFFT; it is less flexible if
you want to predict smooth values at only a subset of locations; and it
provides only negligible performance improvements in 1d [49].

4.3 Automatic bandwidth selection

Kernel smoothing introduces a tuning parameter which controls the
degree of smoothing: the bandwidth. There is much statistical research
on how to pick the “best” bandwidth but it is typically framed in the
content of reducing integrated mean squared error, and it is not ob-
vious that this corresponds with what we want for visualisation [12].
Following [36], I take a pragmatic approach and use leave-one-out
cross-validation (LOOCV) [14] to provide a starting point for the user.
In a realistic data analysis scenario, this would be supplemented with
interactive controls so the user could explore findings at different lev-
els of resolution.

The intuition behind LOOCV is simple: we compare the actual
statistic at each location with its smoothed prediction computed with-
out that observation. The observation level errors are summarised with
the root mean squared error (rmse):

√
∑(yi− ŷi)2/n, and we look for

the bandwidth that has the smallest rmse. We can visually explore the
rmse across a range of possible grid values, or use standard numerical
optimisation (like L-BFGS-B [7]) to find a minima. Figure 6 shows the
LOOCV rmse error for the three variables in Figure 2. It demonstrates
the challenges of relying on numerical optimisation alone: mean and
sd have a number of local minima, while count is very flat.

With the bounded tricube kernel, LOOCV is straightforward to im-
plement efficiently in O(mb), where b is the number of bins covered
by the kernel (b� m). [16] suggests incremental algorithms that may
reduce computation time still further.
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Fig. 6. A leave one out cross-validated estimate of the root-mean-
squared-error associated with smoothing the count, mean, and sd from
Figure 2 with varying bandwidths. Rmse has been capped at 2 to focus
on the regions with lower errors.

4.4 Varying bandwidths
Intuitively, it seems like we should be able to do better with an adap-
tive binwidth. We could use smaller bins where there is more data,
or where the underlying curve is especially wiggly. There are many
approaches documented in the literature [46, 6, 40, 24]. We follow
the simple, but performant, approach outlined in [15]: to find a per-
location h, we divide the data into m/(10 · log(m)) pieces, estimate
the optimal bandwidth for each piece separately, then smooth the esti-
mates.

Figure 7 illustrates the process for a challenging function proposed
by [15]. It demonstrates the effectiveness of this approach: a fixed
bandwidth will either over-smooth on the left or under-smooth on
the right, whereas a variable bandwidth can adapt to provide visually
equivalent smoothness across the entire range of the function.

5 VISUALISE

Once we have binned, summarised and smoothed the raw data, it is
relatively straightforward to visualise it. When discussing visualisa-
tions, it’s useful to distinguish between the binned variables from the
original data set, and the new variables created by the summaries. To
make that clear we will adopt the convention that a (n,m)-d dataset or
visualisation represents a dataset with n binned variables and m sum-
mary variables. For example, Figure 2 shows 3 (1,3)-d plots (distance,
count + mean + sd), Figure 3 shows a (2,1)-d plot (distance + speed,
count), and Figure 1 is a (2,1)-d visualisation produced from a (2,2)-d
dataset (distance + speed, count + mean).

Generally, we are interested in plots where both m and n are one or
more. A (0,1) plot would just display the distribution of the summary
statistic across all bins, and a (m,0) plot would just show where the
bins occurred. A (0,2) plot might be of interest, because you could
compare summary statistics within each bin (e.g. you might be inter-
ested in bins with high mean and low standard deviation), but because
it does not show the original context, we will not consider it further.
Section 5.1 discusses (1,1)-d plots, and Section 5.2 (2,1)-d plots. Sec-
tion 5.3 discusses general combinatoric methods for combining low-d
plots to deal with n-d data.

As the size of data grows, the probability of finding very unusual
values also increases. In practice, I found many large data visualisa-
tions look like the initial plot in Figure 1, with most data concentrated
in a small area. We have two tools to deal with this: peeling for outliers
in space, Section 5.3.1, and the modulus transformation for outliers in
colour and other aesthetics, Section 5.3.2.

Finally, it is important to preserve missing values: this is not an
issue just for big data, but is worth mentioning here. Section 5.4 dis-
cusses the importance of missing data, and why the plots you have
seen so far are potentially misleading.

5.1 (1,1)-d plots
(1,1)-d plot are simple to represent with a line. If the summary statistic
is a count, this produces a frequency polygon [42]. This is an improve-
ment on the traditional histogram as it is easier to overlay multiple fre-
quency polygons in one plot, and it unifies the display of counts and
other summaries.

If the statistic is not a count, we also need some way of calibrating
for the uncertainty of the estimate. This is important because we don’t
draw strong conclusions from areas with weak data support. We have
already seen one option in Figure 2: display both the count and the
summary in adjacent plots. Figure 8 shows two other options, map-
ping either the count or relative error to the colour of the line. Using
the count shows us where the majority of the data lie, but a measure-
ment of error is more important for calibrating our expectation of un-
certainty. Using relative error makes it possible to use a common scale
across all plots, where errors above a certain threshold (here 10%)
blend into the plot background. In this example, apart from the first
line segment, all errors are less than 0.3%.

Estimates of error can be found through asymptotic approxima-
tions, like the central limit theorem (CLT), or computationally with
the bootstrap [14]. For example, the standard error of the mean given
by the CLT is σ/

√
n, and this approximation is known to be good for
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most underlying distributions as long as n is relatively large (a com-
mon rule of thumb is 30). The standard error of other summaries is
typically more difficult to derive, but it is usually easy to approximate
with the boostrap. The disadvantage of the boostrap is that it requires
multiple passes through the data, selecting a different random subset
each time.

5.2 (2,1)-d plots
(2,1)-d plots require a display like Figure 1, which is often called
a heatmap [56] (although that name is sometimes reserved for plots
of categorical data), or a a tile plot. Other alternatives are contour
plots (particularly for smoothed data), or the many other cartographic
techniques for displaying surfaces [30].

Calibrating for uncertainty is more challenging in 2d. Figure 9
demonstrates two ways of showing the error associated with the es-
timates in Figure 1. The top figure shows a tile plot of relative error
overlaid with a smoothed contour plot. The bottom figure maps trans-
parency to relative error so that regions with high errors are hard to see.
None of these approaches are perfect: a separate tile plot of relative er-
ror is hard to integrate with the other summary; overlaying a contour
plot is challenging because the underlying surface is not very smooth
and there are patches of unusual values; and using transparency gives
a qualitative, not quantitative, impression of uncertainty. Better ap-
proaches likely require interactivity, as discussed in the following sec-
tion.

5.3 (n,m)-d plots
Extending these graphics to higher dimensions is challenging, but two
general avenues of attack exist: small multiples and interaction.
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Fig. 9. Three ways to display the uncertainty associated with a (2,1)-d
plot of speed, distance, and average delay, as in Figure 1. (Top) A tile
plot and smoothed contours of relative error. (Bottom) Relative error
mapped to transparency.

Small multiples (aka faceting) can be used to display low-d slices
through a high-d dataset. The product plots [54] framework explores
this in detail for count summaries of categorical data. It can be readily
extended to continuous data, because binned continuous variables can
be treated the same way as categorical variables. There are two ad-
ditonal constraints: tiles (treemaps) are no longer appropriate because
they do not preserve ordering, and initial variables need to be relatively
coarsely binned to ensure there is sufficient space to display variables
lower in the hierarchy.

An alternative approach is to use interaction. Linked brushing pro-
vides an effective way to connecting multiple low-dimensional dis-
plays to gain high-dimensional insight [34, 45]. This can also reduce
the data summary burden [22].

5.3.1 Peeling

A simple approach to deal with spatial outliers is to remove the least
populated outer bins. I call this approach peeling, and have imple-
mented it by progressively removing the smallest counts on the con-
vex hull of the data. Figure 1 illustrates the utility of this technique:
even peeling off a tiny fraction of the data (0.5%) yields a substantially
improved plot. Some small amount of peeling (often < 1%) seems to
improve most 2d plots, drawing the focus to the bulk of the data. For
plots of non-count summaries, this also has the additional benefit of
reducing outliers in the summary dimension.
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Rather than simply throwing outliers away, it is better to partition
the analysis to look separately at the common and at the unusual. Out-
liers are often interesting!

5.3.2 Modulus transformation
Removing bins with small counts will sometime remove the most out-
lying values in the summary dimension, but often many outliers will
remain. It’s useful to have a flexible technique to down-weight the
visual impact of these unusual values, without removing them alto-
gether. I suggest using the modulus transformation [27], which pro-
vides a flexible tool to shrink or expand the tails of a distribution. Fig-
ure 1 demonstrates the importance of a mild transformation to avoid
outlier-induced distortion of the colour scale.

The modulus transformation generalises the Box-Cox transforma-
tion [5] to deal with both positive and negative data:{

sgn(x) · log(|x|+1) if λ = 0,

sgn(x) · (|x|+1)λ−1
λ

if λ 6= 0.
(3)

The λ parameter controls the strength of the transformation, with
the strongest transformation at λ = 0.

The modulus transformation is particularly useful in conjunction
with interactivity, as it allows the user to dynamically focus on im-
portant parts of the distribution. This provides a smooth alternative to
discontinuous scales that force the inclusion of certain values [28].

5.4 Missing values
An important design principle is that missing values should never be
omitted without user intervention: they should always be preserved
along the entire route from raw data to final visualisation. It should be
possible to remove them, but it must be a deliberate decision by the
analyst: you never want to distort a visualisation by silently leaving
off data. This an important principle of MANET [48], and is essential
for real data which often have missing values, either in the raw data,
or introduced during data cleaning. This principle is generally sim-
ple to implement, but must be carried through all other components
of the framework: missing values must be preserved during binning,
summarising and smoothing.

That said, none of the plots in this paper actually preserve missing
values. Figure 10 shows why this is a bad idea: the distribution of
speed is very different depending on whether or not distance is miss-
ing. Distance is clearly not missing at random, so ignoring missing
values may lead to skewed conclusions.

6 THE bigvis PACKAGE

The bigvis package provides a reference implementation of the bin-
summarise-smooth framework with an open-source R package avail-
able from http://github.com/hadley/bigvis. It has two
main parts: a high-performance implementation of the key algorithms
written in C++, and a user-friendly wrapper that supports exploratory
data analysis written in R. The key to bridging the two pieces is the

●

●

●

●

●

●

●

●

●

●

●

●

0.05

0.10

0.50

1.00

5.00

10.00

102 103 104 105 106

Number of bins

T
im

e 
(s

) Summary

●

median

sd

count

Data size

●

●

●

108

107

106
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Rcpp package [13] which provides an easy way to access R’s internal
data structures with a clean C++ API.

The C++ component makes use of templated functions to avoid the
cost of virtual method lookup (this is small, but adds up with poten-
tially 100’s of millions of invocations). This adds an additional chal-
lenge when connecting R and C++ because templated functions are
specialised at compile-time, but the R code needs to call them dynam-
ically at run-time. To work around this problem, a small code gen-
erator produces all specialised versions of templated functions. This
is somewhat inelegant, but unavoidable when coupling programming
languages with such different semantics.

The bigvis API is designed to make visualising large datasets fa-
miliar to R users. It implements methods for the autoplot generic
function, providing default visualisations designed with the principles
above, and also cleanly interfaces with other plotting tools in R, like
ggplot2 [52, 53]. This makes it easy to build custom graphics based
on the condensed and smoothed data if the default graphics are not
sufficient. The figures in this paper were all drawn with ggplot2, and
are heavily customised for maximal clarity.

6.1 Benchmarks
Figure 11 provides basic benchmarks for the bigvis package, over a
range of data input sizes, bins and summary statistics. Timings were
performed on a 2.6 GHz Intel Core i7, 15” MacBook retina with 16 Gb
ram and a solid state hard drive. The benchmarks assume the data are
already in memory: loading data from R’s binary on-disk serialisation
takes around 2s for 108 observations.

Computing time grows linearly with input size and slowly with
number of bins (only conditions where there would be 10 or more
observations in each bin are shown). There is relatively little variation
between the count, standard deviation and mean. The three summaries
are all O(n), but the standard deviation has a higher constant than the
mean, and the median is slowest because it requires a complete addi-
tional copy of the data.

These timings are lower bounds on potential performance: I have
been programming in C++ for less than six months so the C++ code
is by no means expert and uses only a smattering of advanced C++
functions. There are likely to be considerable opportunities for further
optimisation.

7 FUTURE WORK

The bin-summarise-smooth framework provides a flexible toolkit for
the visualisation of large datasets, designed around the pixels-on-
screen bottleneck. It balances computational and statistical concerns
to create a framework that scales well with data size, without sacrific-
ing the fidelity of the underlying data.

http://github.com/hadley/bigvis


While the reference implementation is in-memory and single-core,
parallelisation and out-of-memory datastores are obvious areas for fu-
ture work. We expect that fine pre-binning with simple summaries
may be done in an existing datastore; the grouping algorithm is trivial
to implement in SQL, and most databases already provide simple sum-
mary statistics like the mean. Other systems, e.g. madlibs [23], may
provide richer summaries making grouping and summarising in the
database even more appealing. Column store databases [31] are a nat-
ural fit with statistical data, and may provide efficient out-of-memory
back ends. Multicore and GPU implementations providing exciting
avenues to extend this framework to deal with a billion points and be-
yond.

This paper has focussed on continuous data, but it is straightfor-
ward to extend to categorical variables that take on relatively few val-
ues. Such variables can be trivially mapped to integers, and smooth-
ing is usually not appropriate. The challenge typically arises during
visualisation, where some seriation [20] is often needed to draw out
important patterns. An additional challenge is when the number of
categories grows with the size of the data: if there are more categories
than pixels, which categories do you collapse together?

Finally, it’s important to note that visualisation is only one piece
of the data analysis puzzle: we also need tools for transforming and
modelling big data. Visualisation is excellent for raising and refining
questions, but does not scale well: a human needs to look at each plot.
Statistical models and other algorithms scale well, but never reveal
what you fundamentally don’t expect. Tools for visualisation must
interconnect with tools for modelling, so practitioners can take advan-
tages of the strengths of both toolsets. This is one reason I work in R;
practitioners can combine independent visualisation, modelling and
manipulation tools to solve real problems.
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