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Abstract

Conventional boxplots (Tukey, [1977) are useful displays for conveying rough in-
formation about the central 50% and the extent of data. For small-sized data sets
(n < 200), detailed estimates of tail behavior beyond the quartiles may not be trust-
worthy, so the information provided by boxplots is appropriately somewhat vague be-
yond the quartiles, and the expected number of “outliers” of size n is often less than
10 (Hoaglin et al., [ 1986). Larger data sets (n ~ 10,000-100,000) afford more precise
estimates of quantiles beyond the quartiles, but conventional boxplots do not show this
information about the tails, and, in addition, show large numbers of extreme, but not
unexpected, observations.

The letter-value plot addresses both these shortcomings: (1) it conveys more de-
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tailed information in the tails using letter values, but only to the depths where the
letter values are reliable estimates of their corresponding quantiles and (2) “outliers”
are labeled as those observations beyond the most extreme letter value. All features
shown on the letter-value plot are actual observations, thus remaining faithful to the
principles that governed Tukey’s original boxplot. We illustrate letter-value plots on
real data (univariate and bivariate) that demonstrate their usefulness, particularly for
large data sets. All graphics are created using R (R Development Core Team, [2011),
and code and data are available in the supplementary materials.

Key words: boxplots, quantiles, letter value display, fourth, order statistics, tail

area, location depth.

1 Introduction

Boxplots (Tukey, 1970, 1972) give a compact graphical summary of the distribution of a
variable, based around a set of order statistics called letter values. In Exploratory Data
Analysis, Tukey| (1977) recommended the ([n/2] + 1)/2-th and (n + 1 — ([n/2] + 1)/2)-
th order statistics as estimates of the quartiles, the “lower fourth” and “upper fourth” in
Hoaglin et al. (1983) with depth ([n/2] + 1)/2 because they lie that many observations in
from the extremes.

Boxplots are one of the few statistical graphics invented in the 20th century that have
gained widespread adoption. Despite their widespread use, they are not altogether sat-
isfactory, particularly for large data sets. Specifically, two problems arise with boxplots

when applied to large data sets: (1) the number of “outliers” (observations beyond the



whiskers) grows linearly with the sample size and (2) estimates of tail behaviour are not
displayed, despite the fact that larger sample sizes allow more reliable estimates further
out into the tails. Figure 1] illustrates both problems with a boxplot of 135,605 internet
(log-transformed) session durations, stratified into 32 groups based on the logarithm of
the number of bytes transferred during the session. See Kafadar and Wegman| (2004) for
further details about the data and transformations. The sample sizes in the 32 boxes range
from 1341 (box #32) to 7865 (Box #13), with a median sample size of 4238. With so
many observations in each category, the number of labeled outliers is huge, with far too
many to investigate individually, making it difficult to distinguish between extreme values

and true outliers.
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Figure 1: Notched boxplots (McGill et al.,{1978) of (log-transformed) duration for 135,605 internet
sessions, grouped by ranges of (log-transformed) byte lengths for the sessions.

An observation is labelled as an “outside value” (which we will denote here simply as



“outlier”) and displayed individually if it lies at or beyond the inner fences (Tukey, 1977;
Emerson and Strenio, (1983), defined as [Lp — k(Ur — Lr),Ur + k(Up — Lr)| where Lp
and Ur denote the lower and upper fourths and typically k£ = 1.5. Despite the name, these
“outliers” may be either (a) genuine, but extreme, observations from same the distribution
as the bulk of the data; or (b) true outliers, observations from a different distribution. The
boxplot tends to display too many “outliers”, as judged by looking at boxplots of Gaussian
data. There the expected number of “outliers” grows approximately linearly with n: the
theoretical fourths from a sample of independent Gaussian observations are +0.67450,
yielding an interquartile range of 1.35¢, and inner fences at +(0.675+1.5-1.35)0 = +2.700.
Therefore the box and whiskers covers 99.3% of the distribution, leaving about 0.7% of
the points to be labeled as “outliers” (cf. Hoaglin (1983)). Similarly, the probability of
getting at least one “outlier” for Gaussian data exceeds 30% for samples of size 50, and
97% for samples of size 500 (Hoaglin et al., 1986, pg. 1148). The approach of Hoaglin
and Iglewicz (1987), which labels a fixed number of “outliers” (“fixed outside rate”) using
a rule based on the fourths, avoids this dependence of the expected outside rate on the
underlying distribution. Although it avoids the linear dependence of number of “outliers”
on n, it also fails to display any interesting features in the tails. Large data sets permit
many more letter values that can be reliably estimated to provide more information about
the tails.

Alternative displays have been proposed to better illustrate tail behavior, such as vase

(Benjamini, (1988)), violin (Hintze and Nelson, [1998), and box-percentile plots (Esty and



Banfield, 2003). These displays provide more detailed information about the distributions,
through the use of nonparametric density estimates, which is especially useful for larger
sample sizes. However, as Benjamini (1988]) acknowledged, these displays depend on
the specific estimation procedure (e.g., kernel density estimate) as well as on additional
smoothing (“tuning”) parameters. Thus, these displays can be different for the same data
set, depending on the density estimate or smoothing parameters. As an initial exploratory
visualization tool, this dependence on multiple tuning parameters is less than desirable.

Letter-value plots are a variation of boxplots that replace the whiskers with a variable
number of letter values, selected based on the uncertainty associated with each estimate
and hence on the number of observations. Any values outside the most extreme letter
value are displayed individually. These two modifications reduce the number of “outliers”
displayed for large data sets, and make letter-value plots useful over a much wider range
of data sizes. Letter-value plots remain true to the spirit of boxplots by displaying only
actual observations from the sample, and remaining free of tuning parameters. Figure
shows the same data as a letter-value plot, which better shows the skewed tails (even with
the logarithmic transformations) and far fewer “labeled” outliers. Letter-value plots are
described in detail in Section [3]

One consideration for letter value plots involves the number of letter values to display
(i.e., when to stop displaying letter values and start showing individual observations).
Figure 2 shows only those letter values whose approximate “95% confidence intervals” do

not overlap the successive letter values. Section 4] discusses three other rules to select the
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Figure 2: Letter-value plots of (log-transformed) duration for 135,605 internet sessions, grouped
by ranges of (log-transformed) byte lengths for the sessions.

letter values based on the sample size. Some proposals for multivariate data and final
discussion appears in Sections 5| and [6]

Our implementation of letter-value plots is available as an R package, lvplot, from
CRAN. The online supplementary material contains all code and data used for the plots in

this paper.

2 Letter values

Let X(1), ... X(») denote the order statistics from a sample of size n. Per conventional
notation, let [y| and [y] denote the greatest integer below y and the next integer above
y, respectively. The letter values are those order statistics having specific depths, defined

recursively starting with the median. The depth of the median, d;, of a sample of size n is



defined as d; = (1 + n)/2; the depths of successive letter values (F = fourths, E = eighths,
D = sixteenths, C = thirty-seconds, ...) are defined recursively as d; = (1 + [d;_1])/2. (We
also will use the letter value itself as the subscript to the notation for depth; e.g., both d;
and d,; denote the depth of the median.) If the depth is an integer plus 1, then the lower
letter value is defined as the average of the two adjacent order statistics, X 4,)) and X (4,7,
and similarly for the upper letter value.

The i** lower and upper letter values (LV;) are thus defined as L; = X, and U; =
X(n-a;+1)- The advantage of this definition for the letter values is that the median of the
sampling distribution for this sample quantile from a continuous distribution F(-) is very
close to F~!((i — 3)/(n + 3), for a wide range of F, n, and ¢ (Hoaglin, [1983). Because
each depth is roughly half the previous depth, the letter values approximate the quantiles
corresponding to tail areas of 27°.

The “labeled outlier rule” for conventional boxplots relies on the fourths because the
rule is then “unlikely to be adversely affected by extreme observations” and “to minimize
the difficulties of masking” (Hoaglin et al., (1986, pg. 992). The breakdown point of these
boxplots is 25%; i.e., only if 25% or more of the data values, all located in one of the
tails, are contaminated, will the summary statistics and outlier identification change. This
high breakdown is one of the valuable features of boxplots. Moreover, the relatively low
uncertainty in the fourths as estimates of the quartiles argues for using the fourths in the

rule for labeling “outliers”: the standard deviation of the fourths in a Gaussian population

equals roughly [(0.25 - 0.75)/(né¢(®~1(0.25)))]*/%20 = 1.3620/4/n or a 2-SD uncertainty of



roughly 0.250 for Gaussian samples of size 120 (David and Nagaraja, 2003). Estimates
of the population quantiles beyond the quartiles, when based on order statistics, are in-
creasingly variable; e.g., for the same n = 120 sample, the 2-SD uncertainty in the eighths
(depth = 13) and sixteenths (depth = 7) is approximately 2 x 1.6070/y/n = 0.290 and
2 x 1.9680/+4/n = 0.360, respectively. Table (1| shows these factors for the standard error
formula, SEfactor, for the first 20 letter values, as well as the factor in increase in sample
size needed for successive letter values to have the same uncertainty as the fourth. (For
example, the fourths in a sample of size 120 have a 2-SD uncertainty of 0.25¢; we would
need a sample of size 1.4-120 = 168 for the eighth to have this same level of uncertainty.)
For small samples, then, restricting attention to estimates of only the population median
and quartiles, with some general indication of the tail length beyond the quartiles, is likely
to be about all the information that the data can reliably support.

Letter values are particularly useful for large data sets, because (a) much of the most
valuable information, especially for inference purposes, is contained in the tails (cf. Win-
sor’s principle, “All distributions are normal in the middle” (Tukey, 1960, pg. 457)); and
(b) adjacent letter values have asymptotic correlation \/m = 0.707 (Mosteller] (1946)
cited by Hoaglin| (1983, pg. 51-52)). Thus, rather little information concerning tail be-
havior is lost by considering only the letter values. Figure [3|illustrates this retention of tail
information in visualizing the distribution of the 1980 populations and their logarithms
in 3068 continental U.S. counties via normal quantile-quantile (QQ) plots (panels A and

B, respectively) versus using only the 25 letter values (panels C and D, respectively); the



IV ideal tail area rough % odds (2)  SEfactor n-equiv*

M .50 50.0% 2 1.253314

F .25 25.0% 4 1.36 1.0
E 125 12.5% 8 1.60 1.4
D .0625 6.25% 16 1.96 2.1
C .03125 3.13% 32 2.47 3.3
B .015625 1.56% 64 3.16 5.4
A .0078125 0.8% 128 4.10 9.1
Z .00390625 0.4% 256 5.37 15.6
Y .001953125 0.2% 512 7.11 27.3
X .0009765625 0.1% 1,024 9.48 48.4
W .00048828125 0.05% 2,048 12.70 87.0
VvV .000244140625 0.024% 4,096 17.11 157.7
U .0001220703125 0.012% 8,192 23.14 288.5
T .00006103515625 0.006% 16,384 31.40 531.3
S .000030517578125 0.003% 32,768 42.75 984.4
R .0000152587890625 0.0015% 65,536 58.34  1833.5
Q .00000762939453125 0.0008% 131,072 79.80  3430.5
P .000003814697265625 0.0004% 252,144 109.38  6444.3
O .0000019073486328125 0.0002% 504,288 150.19 12149.2
N .00000095367431640625 0.0001% 1,008,576 206.55 22977.6

Table 1: First 20 letter values. Ideal tail areais 2%, i = 1,...,20. rough% rounds 2~% x 100%
to the first 1 or 2 nonzero digits. odds expresses tail area as 1 in 2°. SEfactor gives the fac-
tor for the asymptotic standard error of the order statistic (from a Gaussian population, vari-
ance o2) corresponding to tail area, i.e., SE(LV) ~ SEfactor xo//n, where SEfactor =
Vri(l—p)/o(®H(p;i)), pi = tail area = 27% n-equiv = (SEfactor/1.362633)? which gives
the factor of increase in sample size for the uncertainty in that letter value to be the same as
that for the fourth; e.g., need 1.4n (respectively, 2.1n) observations for the eighth (respectively,
sixteenth) to have the same uncertainty as that of a fourth from a sample of size n.



right column reveals the advantage of logarithms.
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Figure 3: QQ plots on 3068 Continental U.S. county populations (A) and their logarithms (B),
versus QQ plots (C), (D) using only 25 letter values.

3 Letter-value plots

Letter-value plots are based on the letter values, with one box for each pair of lower and
upper letter values. The median is shown by a vertical line segment, and the innermost box
is drawn at the lower and upper fourths, as in the conventional boxplot. An incrementally
narrower box is drawn between at the lower and upper eighths, and narrower one still
at the lower and upper sixteenths. We continue in this fashion until we reach a box that
corresponds to a stopping rule described in the following section. Boxes with matching
heights correspond to the same depths. We also shade more heavily the innermost boxes,

to indicate a higher data density.
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Beyond the most extreme box, all observations are identified individually. With this
definition, the expected proportion of the “outliers” (roughly 1/2%) equals the expected
proportion between this end and the end of the next bigger box (i.e., roughly 1/2i~1 —
1/20 = (1/271(1 — 271) = 1/2%). When d; reaches 1, the letter values are the extremes
(minimum and maximum).

Letter-value plots for three different distributions are shown in Figure 4. Each panel
displays a sample of 10,000 data points (top = standard Gaussian, middle = exponential
with mean 1, bottom = standard uniform), first using the proposed letter-value plot up
to letter Y, corresponding roughly to tail area 272 = 1/512 (top row), and then with the
the conventional boxplot (bottom row). Comparing the left (Gaussian) and right (Uni-
form) letter-value plot, overall more heavily shaded displays correspond to distributions
with lighter tails. This phenomenon is shown more forcefully in Figure |5 which shows

three decreasingly heavy-tailed ¢ distributions with 2, 3, and 9 degrees of freedom.
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Figure 4: Letter-value plots (top row) and standard boxplots (bottom row) for data from three
different distributions. Each plot shows 10,000 data points. From left to right, samples come from
N(0, 1), Exp(1), and UJ0, 1].

Figure [6] shows letter-value plots and boxplots for the 1980 populations and log popu-
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Figure 5: Letter-value plots and standard boxplots for samples of 10,000 for ¢ distributions on 2, 3,
9 degrees of freedom. Top row: Letter-value plots. Bottom row: Conventional boxplots.

lations of the 3068 counties in the United States. While the skewness in the distribution
of the populations is evident from both the letter-value plot and the conventional boxplot,
the former shows more clearly that the right tail of the log populations above the median
is somewhat more extended than the left tail below the median (i.e., the boxes to the right

of the median are slightly longer than those to the left of the median).
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Figure 6: Letter-value plots and standard boxplots for the 1980 populations and log populations of
3068 counties in the continental United States.
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4 Extent of letter-value plots

We need a rule to determine the number of boxes to show in a letter-value plot, which will
determine the number of labeled outliers. In this section, we consider four proposals for
such a rule.

In many of the displays in Exploratory Data Analysis, Tukey identified 5-8 extreme
points. As a rough guideline, we can choose the extent of the letter-value plot display so
that the last set of boxes encompasses all but the 5-8 most extreme observations. Recall
that the depth of the k'" letter value, dy, is defined in terms of the previous depth: d, =
(1+ |dk-1])/2, which implies that 2d, — 1 < d;_; < 2d;, — (1/2). If we stop the letter-value

plot display at LV}, where

k= |logan] — 3 (D

then we can expect to label 5-8 observations in each tail.
An alternative criterion fixes the number of labeled outliers as a percentage of the
overall sample size. Letting p denote this proportion, the last set of boxes to be drawn

ends with depths

k = [logyn| — [logy(np)] +1 (2)

In effect, conventional boxplots use this rule, with p = 0.007. This criterion results in

the same rule as the previous rule for the samples in Figure {4 (n = 10,000) when p lies
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between 0.004 and 0.006 (0.4-0.6%), and in Figure [f] (n = 3068) when p lies between
0.011 and 0.020 (1.1-2.0%).

A third approach is a rule in which the final k is based on the “trustworthiness” of the
k" letter value as an estimate of the corresponding population quantile. “Trustworthiness”
can be characterized by the approximate 95% confidence interval around a given letter
value: if the interval overlaps the subsequent letter value, then the uncertainty for the
given letter value is high enough that we should not display it. Thus, boxes are shown for
those letter values whose approximate 95% confidence intervals exclude the neighboring
letter values. Since a letter value can be viewed as the median between the extreme
and the previous letter value, and since an approximate 1 — « confidence interval for
the median of m values (with m > 10) has approximately 0.5/mz;_,/» observations on
both sides of the sample median (rounding to the nearest integer), where z,_,/, is the
1 — a/2 quantile of a standard Gaussian distribution (David and Nagaraja (2003, 161),
based on the Gaussian approximation to the binomial distribution), this third criterion
leads to a particularly straightforward rule. (This result from David and Nagarajal (2003,
161) assumes a random sample, which is not true of the d; observations beyond LV;. A
brief simulation confirmed that the result still holds sufficiently well for these purposes;
details available from the authors.)

Consider the upper k' letter value, LV}. If its upper 95% confidence limit does not
extend beyond the next letter value, LV, |, we continue to the next letter value, LV}, 1;

otherwise, the box corresponding to LV}, is the last box shown. Since approximately dj;
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observations lie between LV}, and LV}, and the upper 95% limit for LV} has roughly
\/ﬂ ~ +/2d; observations, this principle requires /2d;, < dpy1 ~ di./2, or d > 8. A
rule such as this one with 95% confidence level often leads to labeling 5-8 of the most
extreme observations on each side, surprisingly consistent with many of the displays in
Tukey (1977).

Generally, the third rule suggests showing k “trustworthy” IVs where dj, > 2z7 | /o>

leading to the following stopping criterion:

k = |logy(n) — log, (QZf_a/2)J +1 3)

This third stopping rule has the obvious advantage that it provides a simple, distribution-
free solution. Neither the overall sample size, nor any distribution-related characteristic
such as skewness or kurtosis, affects the rule. When o = 0.05 (95% point-wise confidence),
the rule leads to showing only those letter values whose depths are at least 10 (i.e., labeling
5-8 observations on each side). Because the first rule is a special case of this third rule, we
will consider the use of only stopping rules 2 and 3. Note that £ = 7 when n is between
492 and 983, which corresponds to letter value A (Gaussian tail area 0.78%). When n is
between 984 and 1966, k = 8, corresponding to letter value Z (Gaussian tail area 0.39%),
which is very close to the expected percentage of outliers from a Gaussian sample that are
labeled by the conventional boxplot rule (Gaussian tail area 0.35%).

A fourth rule is a variant of the previous rule, but assesses “trustworthiness” in terms

of the standard error of the letter value. Table [1| shows SEfactor, the factor used for the
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asymptotic standard error of the letter value for a Gaussian population:

SE(LV;) = o+/pi - (1 —pi)/n/é(@(p;)) = (SE factor)o/\/n, pi=2"". 4

When i = 2 (p; = 0.25, fourths) and n = 120, this standard error is approximately 0.125¢;
when n = 186, it is 0.100, and when n = 743, it is 0.05¢. Thus, a rough 2-SE interval
around the fourth is roughly 0.250, 0.20, or 0.10, respectively, as n increases from 120 to
186 to 743. How many more letter values can be shown with the same level of uncertainty
when n increases? For illustration, consider only the last (and most stringent) criterion,
where 2SFE ~ 0.10. If n > 1032, the asymptotic 2-SE uncertainty in LV3, the eighth (E),
using the formula in (4)), does not exceed 0.1c. For the same precision in LV} (sixteenth),
one needs n > 1550.

Table [2|lists the letter values and the ranges on n for which the uncertainty displayed
up to a given letter value does not exceed 0.50, 0.250, 0.200, and 0.100. For example,
when n = 10,000 and a 2-SD uncertainty around the letter value no greater than 0.200,
one can show up to letter value 10 (X, 1/1024), but only up to letter value 7 (A, 1/128)
for uncertainty of that does not exceed 0.10c. Figure |7 plots the columns in Table [2/ on a
log,, scale, which shows that the logarithm of the sample size is approximately linear in
the letter value number. This rule is very similar to rule (1) when the desired uncertainty
in the letter values does not exceed 0.25¢.

The different rules provide the user with choices depending on the desired precision in

the letter values shown. Our current implementation of the letter-value plot display uses
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0.5 25 0.2 0.1

—e

1 25 101 157 628
2 30 119 186 743
3 41 165 258 1,032
4 62 248 387 1,550
5 98 391 611 2,445
6 160 640 1,000 3,999
7 269 1,077 1,682 6,728
8 463 1,851 2,893 11,570
9 810 3,240 5,063 20,251
10 1,438 5,752 8,988 35,953
2,583 10,333 16,146 64,584

12 4,686 18,744 29,288 117,152
13 8,570 34,282 53,565 214,260
14 15,784 63,137 98,652 394,609
15 29,246 116,983 182,785 731,141

16 54,470 217,880 340,437 1,361,748
17 101,914 407,654 636,960 2,547,840
18 191,449 765,796 1,196,557 4,786,227
19 360,931 1,443,726 2,255,822 9,023,287
20 682,624 2,730,498 4,266,403 17,065,610

ZOTO™W nHC<s XXKNpmOOEHTZ
—
—

Table 2: Letter values and sample size needed for 2-SE intervals of size 0.5 o, 0.25 ¢, 0.2 ¢, and
0.1 o, respectively
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Figure 7: Plot of letter value vs. number of observations (on log-scale) needed for a 2-SD uncer-
tainty of no more than 0.50, 0.25, 0.20 and 0.10 o.
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rule 3 as a default.

5 Bivariate letter value plots

Rousseeuw et al. (1999) proposed the “bagplot” as a two-dimensional version of the box-
plot, using location depths (introduced by Tukey| (1975)) to define analogues of the me-
dian and fourths, and then connecting the points corresponding to the fourth-depths via
linear segments.

The location depth Idepth(p, Z) is defined for an arbitrary point p € IR?, relative to a
set of n points Z = {z; = (x;,y:), ¢ = 1,...,n}, as the smallest number of z;’s contained
in any closed halfplane with boundary line through p. That is, if one were to pass a line
in the plane through p and keep track of the smaller of the two numbers of z; on either
side of the line as the line is rotated through every angle to its opposite side (180°), then
the location depth of that point p relative to Z is the smallest of all the numbers. The
analog of the one-dimension median in two dimensions using location depth would thus
be that point p,, for which ldepth(pys, Z) is largest (e.g., n/2). If such a p is not unique,
then the “depth median” is defined as the “center of gravity” of all points p for which
ldepth(p, Z) is largest. Recall that a property of the fourths for a univariate sample is that
the interval between the lower and upper fourth contains one-half of the data. Thus, an
analog of the box for the bagplot was defined as the convex hull of all points p for which
ldepth(p, Z) > 14 0.5 ldepth(par, Z)]. Similarly, successive letter areas are defined based

purely on their depth as the convex hull of all points in the sample with ldepth;(p, Z) >
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1+ 10.5-ldepth;_1(p,Z)]. Figure 8 shows a side-by side comparison of a standard bagplot

(left, Rousseeuw et al.| (1999), implemented in Wolf and Bielefeld (2010)) of average

temperatures in January by degree latitude of each of 3,068 US counties and a letter-value
bagplot on the right. The asymmetry of the bivariate display around the principal axis,
and the cluster of points above the upper right edge of the final contour, are much more
evident in the letter value bagplot. (These points correspond to ... ???) Algorithms for fast
computation of bivariate letter values for a bivariate letter-value plot are currently under

development.

Temperatures in January (in F)
Temperatures in January (in F)

25 30 35 40 45 25 30 35 40 45

Latitude (in degrees) Latitude (in degrees)

Figure 8: Bagplot (left) and letter-value bagplot (right) of average January temperatures by degree
latitude for 3,068 US counties.
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6 Summary

Letter-value plots provide a natural extension of boxplots in situations where we are deal-
ing with large amounts of data. Like boxplots, they show only actual data values, rather
than smoothed values or estimated densities. Letter-value plots convey further information
about tail behavior beyond the whiskers. Simple stopping rules that depend on neither the
number of points nor on their distribution, allow us to construct reliable plots that are
less prone to over-interpretation when dealing with small number of points: Rule 3 will
ensure that a box for quartiles is drawn only if there are at least 16 data points. This rule
is sensible in situations where we are dealing with groups of very different sizes, such as
Figure |2 Additionally, for large data situations, fewer observations will be labeled as as
“outliers” compared to a conventional boxplot, where there is a fixed rate of outliers —
for a normal distribution it is approximately 0.7%. Letter values can be extended to two
dimensions by using the location depth, giving rise to letter-value bagplots as a two di-
mensional extension of letter-value plots, and providing a robust, data-based assessment
of data concentration in two dimensions. Implementation details are found in the online

supplementary material.
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