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Fig. 1. A selection of plots encompassed by the product plots framework. All display the same data (the distribution of happiness and
marital status), but each supports a different question. From left to right: mosaic plot, treemap, stacked bar chart, fluctuation diagram,
and two new plots that don’t have names. In all plots, area is proportional to probability.

Abstract—We propose a new framework for visualising tables of counts, proportions and probabilities. We call our framework
product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint
distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass
over 20 visualisations previously described in fields of statistical graphics and infovis, including bar charts, mosaic plots, treemaps,
equal area plots and fluctuation diagrams.

Index Terms—Statistics, joint distribution, conditional distribution, treemap, bar chart, mosaic plot

1 INTRODUCTION

Tables of counts, proportions and probabilities are an extremely com-
mon form of data, and many researchers have developed visualisations
to display them. In this paper, we develop a framework that encom-
passes many existing visualisations, from bar charts to treemaps to
pie charts, showing how graphics that previously seemed unrelated in
fact share a deep underlying connection [1]. Our framework makes it
easier to describe and create visualisations of categorical data, shows
how existing methods are related and where new methods can be de-
veloped, and will make it easier to match questions about categorical
data to the visualisations that will provide revealing answers.

Our framework focusses on area charts, where the area of a graph-
ical element is proportional to the underlying count, proportion, or
probability. We call our framework product plots in allusion to two
products: the product of width and height to generate area, and the
product of conditional and marginal distributions to produce joint dis-
tributions. A key development of the products plot framework is
the inverse operation: the factorisation of high-dimensional data to
products of low-dimensional plots. This allows us to combine sim-
ple, low-dimensional graphical primitives to display complex, high-
dimensional data.

We begin in Section 2 with a review of related work. Then Section 3
motivates the three specific graphical constraints at the heart of product
plots: the rectangle. We constrain the rectangle further to produce
three 1d atoms (bar, spine, tile) and one 2d atom (the fluct). These
constraints will later be relaxed in Section 7 to extend our framework
to include more visualisations such as histograms, pie charts, cascaded
treemaps and weighted plots.

Section 4 provides the mathematical framework that allows us to
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combine the 1d and 2d atoms to display data of any dimensionality.
This framework is based on the fundamental statistical idea that any
high dimensional distribution can be factorised into a product of low-
dimensional conditional and marginal distributions. Section 5 shows
how many existing named graphics are special cases of this general
pattern.

Section 6 discusses some considerations for the display of product
plots, and Section 8 introduces the R package prodplot, our ref-
erence implementation of the product plots framework. Finally, Sec-
tion 9 discusses our plans for the future.

To illustrate these ideas, we will use the same data in all examples.
The data is a small sample of variables related to happiness from the
general social survey (GSS) [2]. The GSS is a yearly cross-sectional
survey of Americans, run from 1976. We combine data for 25 years to
yield 51,020 observations, and of the over 5,000 variables, we select
nine related to happiness, as described in Table 1.

2 RELATED WORK

The product plots framework is heavily influenced by the work of
Wilkinson [4; 5], who suggested that both mosaic plots and treemaps
can be described as plots with coordinate systems based on recur-
sive partitioning. Our work builds on this by adding conditioning and
defining a “grammar of area plots”, a domain specific language that
describes this small family of plots in more detail. Other similar ef-
forts to build domain specific languages for visualisation are APT [6]
and VisQL [7]: our framework is driven by similar forces, but carves
out a much smaller niche. This makes products plots less expressive,
but more efficient, because the number of primitives required to de-
scribe the smaller domain is much smaller.

The HiVE system [8] introduces a notation for describing the states
of hierarchical layouts and operators for reconfiguration. Our work
extends HiVE by adding conditioning, and including non-space filling
visualisation. HiVE supports both rectangular layouts and polygon
layouts. Of the rectangular layouts, all but the spatially ordered algo-
rithm are included within the product plots framework.

Polaris [9] relies heavily on a tabular or cubic format in render-
ing hierarchical graphics, which makes these charts essentially a three
dimensional extension of the trellis framework [10; 11]. In the prod-
uct plots framework, this approach is captured by conditioning on the



Variable Description Values

age age in years 18–89
degree highest education lt high school, high school, junior college, bachelor, graduate
finrela relative financial status far above, above average, average, below average, far below
happy happiness very happy, pretty happy, not too happy
health health excellent, good, fair, poor
marital marital status married, never married, divorced, widowed, separated
sex sex female, male
wtsall probability weight 0.43–6.42
year year of survey 1972–2006

Table 1. Description of sample data. Common plot colours are shown next to respective levels. Colours from ColorBrewer palettes [3].

variables used in rows and columns, and displaying the other variables
unconditioned in each cell of the resulting tabular layout.

3 GRAPHICAL PRIMITIVES

Area plots correspond to tilings of the (2d) plane. We could consider
partitions of higher-d spaces (e.g. 3d or 4d), but given that we have
to project these down to 2d for viewing on paper or screen, there is
little disadvantage to working directly in 2d. There are many possible
ways to tile the plane, so to cut these down to a manageable num-
ber, we identify constraints, in the style of [12], that are important for
visualising counts.

Firstly, area must be proportional to count. This is the key con-
straint underlying all area plots. The total area for a graphic is usually
constrained, which means that area plots display typically proportions
or probabilities, rather than counts. With this proviso, we will use
count, probability and proportion interchangeably throughout the pa-
per.

Secondly, partitions must be disjoint. To be able to see the com-
plete area, each rectangle must be non-overlapping. Note that this
does not imply that the tiling must be space-filling, and two of the four
primitives, described next, are not.

Finally, we require partitions to be rectangular. If partitions are
rectangular, many interesting perceptual tasks only require comparing
lengths, or positions along a common scale, tasks which are generally
easier than comparing areas [13; 14]. There is little evidence to suggest
that rectangles are “best” shape for comparison [15; 16], but they are
computationally simple, recursive, in the sense that we can always
tile a rectangle with smaller rectangles, and form the basis for many
existing graphics.

These constraints give rise to four graphical primitives. Section 3.1
describes the three partitions of 1d data, bars, spines and tiles, and
Section 3.2 describes the one partition of 2d data, the fluct. Each of
the three constraints can also be relaxed, yielding the additional types
of partitions described in Section 7.

3.1 1d primitives

1d primitives display 1d data, i.e. counts broken down by a single vari-
able. There are three 1d primitives, as shown in Figure 2 and described
below.

not too happypretty happy very happy not too happypretty happy very happy

Fig. 2. 1d partitions showing the distribution of happiness. From left to
right: bars, spines and tiles.

• bars: height is proportional to value, width equally divides
space. Bars are not space filling, occupying mean(x−max(x))
of the total area. Bars can be arranged horizontally (“hbar”) or
vertically (“vbar”).

• spines: width is proportional to value, height occupies full
range. Spines are space filling and can be arranged horizon-
tally (“hspine”), vertically (“vspine”), or can automatically pick
their orientation (“spine”) by splitting the largest dimension. The
name spine is evocative of books sitting on a library shelf [17].
Bars and spines are indistinguishable when the underlying data
is evenly distributed across the categories.

• tiles: no restrictions on height or width, just tile the plane with
rectangles, trying to keep the aspect ratio of each rectangle close
to 1. This is partitioning defined by the squarified treemap [18].

Each of these three displays has different strengths and weaknesses.
It is easiest to compare the value associated with bars because the per-
ceptual task is the easiest: comparing position on a common scale.
Reading spines and tiles are harder because we must compare lengths
or areas, but they occupy the complete space and so work better recur-
sively.

We can create 2d primitives by combining these 1d primitives, as
shown in Section 4, but there is one 2d primitive that does not arise in
this way.

3.2 2d primitives
2d primitives display 2d data, i.e. a count broken down by two vari-
ables. We are currently aware of only one primitive for 2d data, the
fluct, derived from the fluctuation diagram [19]. The fluct has height
and width proportional to the square root of the count. Each rectangle
is arranged on a regular grid formed by the levels of the two variables,
allowing comparisons both vertically and horizontally.

A special case of the fluct is the equal bin size plot [19] which oc-
curs when the two variables are jointly uniformly distributed, usually
as a result of the conditioning described in the following section. The
equal bin size plot is particularly useful as a way of visualising missing
combinations. Figure 3 illustrates these two types of graphics.

4 PROBABILITY AND PLOT PRODUCTS

To construct plots of higher-dimensional data sets, we need a way to
decompose them into 1d and 2d components. Some statistical vocabu-
lary is useful: one way of describing the input data is as a probability
mass function, or PMF. A PMF is a function with n inputs, each in-
dexing one dimension with an integer, which outputs the probability of
each combination of inputs. A PMF has two restrictions: every value
must be greater than or equal to zero, and all values must sum to one.

4.1 Joint distributions are the product of marginals and
conditionals

Figure 4 shows three ways to represent the the 2d table of proportions
of sex and happiness. The top table displays the joint distribution,
and allows us to answer questions of the form “what proportion of all
people are male and very happy?” – the bottom left number tells us
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Fig. 3. (Top) A fluctuation diagram showing distribution of age (in
decades) and marital status. (Bottom) Equal bin-size plot showing
health status and survey year. Thee three empty columns show that
health status was not recorded for three years.

that these are 0.14. The middle two tables displays two conditional
distributions: the distribution of sex given happiness, and happiness
given sex. These correspond to restricting the row or column sums to
one, and support questions such as “what proportion of pretty happy
people are female?” (the table tells us 0.55), or “what proportion of
males are not too happy?” (the top left number in the table tells us that
it’s 0.12). Finally, the last table displays the two marginal distribu-
tions of sex and happiness. These allow us to answer questions like
“what proportion of respondents were male” (0.44) or “what propor-
tion of respondents were very happy?” (0.30).

Formally, a conditional distribution function is written f (x|y) and is
equal to f (x,y)/ f (y). This definition illustrates that an important sta-
tistical fact: given a conditional distribution and a marginal distribu-
tion, we can always find the joint distribution: f (x,y) = f (x|y) f (y)1.
Conversely, we also see that we need to know both the marginal and
conditional distributions in order to re-construct the joint distribution,
i.e. only the joint distribution contains the full information about the
relationship between all variables involved. Given the joint distribu-
tion f (x,y), we can get either marginal distribution by integrating (or
summing, in the case of a categorical variable) the other variable out:
f (x) =

∫
y f (x,y)dy. The marginal distribution together with the joint

then lead to the conditional distribution. These definitions extend in
a straightforward way to higher dimensions. For example, a 3d joint
distribution can be written as the product of 2d and 1d conditional and
marginal distributions in the following three ways:

• f (x,y,z) = f (z) f (x,y|z)
• f (x,y,z) = f (y,z) f (x|y,z)
• f (x,y,z) = f (z) f (y|z) f (x|y,z)

This means that we can build any high-dimensional PMF as a prod-
uct of low-dimensional conditional and marginal PMFs, a computa-
tionally trivial operation. In the following, we are using the previously

1Because the parameters of a PMF identify it, statisticians often fail to ex-
plicitly label the different functions. To be precise, the above statement should
be written: fX ,Y (x,y) = fX |Y=y(x|y) fY (y)

f (happy,sex)

male female

not too happy 0.05 0.07
pretty happy 0.25 0.31

very happy 0.14 0.18

f (sex|happy)

male female

not too happy 0.43 0.57
pretty happy 0.45 0.55

very happy 0.43 0.57

f (happy|sex)

male female

not too happy 0.12 0.12
pretty happy 0.57 0.55

very happy 0.31 0.32

f (happy) and f (sex)

male female

not too happy 0.12
pretty happy 0.56

very happy 0.30
0.44 0.56

Fig. 4. The distribution of happiness and sex, displayed in three equiv-
alent ways. (Top) Joint distribution. Overall table sums to one. (Middle)
Conditional distribution of sex given happiness and marginal distribution
of happiness. (Bottom) Conditional distribution of happiness given sex
and marginal distribution of sex.

introduced low dimensional primitives for a graphical analog of this
multiplication.

4.2 Area is the product of height and width
We connect probability products to our rectangular primitives by not-
ing that areas are also products: products of height and width. It’s
easiest to show this with a picture: Figure 5 shows how our simple
1d primitives combine to get two familiar plots: the mosaic plot and
the stacked bar chart. From left to right, we have plots of f (happy),
f (sex|happy) and the product f (happy,sex). The heights and widths
of the rectangles are multiplied in the same way as the components of
the PMF.

not too happypretty happy very happy

=

not too happypretty happy very happy

=

not too happypretty happy very happy

not too happypretty happy very happy

×

not too happypretty happy very happy

=

not too happypretty happy very happy

Fig. 5. Plots of the distribution of happiness and sex ( male, female)
(Left) f (happy), (Middle) f (sex|happy), (Right) f (happy,sex).

Figure 6 shows a more complicated example: visualising
a 3d distribution as a product of three low-dimensional distri-
butions. We first display f (marital), then f (marital,sex) =
f (sex|marital) f (marital), and finally f (marital,sex,happy) =
f (happy|sex,marital) f (sex|marital) f (marital). This plot uses two
vspines and an hspine to produce a mosaic plot.

More precisely, a product plot is constructed by the following re-
cursive partitioning algorithm, which takes three parameters: data, a



f (marital)

married never marrieddivorcedwidowedseparated

f (marital,sex)

married never marrieddivorcedwidowedseparated

f (happy,sex,marital)=
f (happy|marital,sex)·
f (marital,sex)

married never marrieddivorcedwidowedseparated

Fig. 6. Conditional on marital status, are men or women happier? This
figure shows the construction of f (happy,sex,marital) with (from left to
right) a vspine by marital status, a vspine by marital status and sex, and
a hspine by marital status, sex and happiness. For all levels of marital
status, men are slightly less happy.

multi-dimensional array, with dimensions ordered in the same way as
the desired partitions; bounds, a vector giving the top, left, right and
bottom boundaries; and divider, a list of the desired low-d drawing
primitives. The following algorithm gives an rough idea of the com-
putation:

• Calculate the one marginal and i conditional distributions.

• For each probability in the marginal distribution, divide the cur-
rent bounds into i sets of new bounds, one for each level of the
categorical variable. The new bounds are found using the algo-
rithm defined by the drawing primitive.

• For each new bound and matching conditional distribution, call
the partition function recursively, dropping one element from the
list of drawing primitives.

Different partitions reveal different features of the data. Take for
example, the distribution of age and marital status, as shown in Fig-
ure 3. Instead of visualising the joint distribution with a fluct, we could
focus on the conditional distribution of marital status given age, or age
given marital status. Figure 7 shows two ways to do this. The left plot
shows f (marital,age) with a vspine nested in a hspine, and the right
plots f (age,marital) with a hbar nested in a vspine. These displays
show the same data, but support different comparisons: on the left, we
can see that most young people are unmarried, and on the right, that
few unmarried people are over the age of 30. The right plot, with bars
nested inside spines, also illustrates an important feature of non-space
filling tilings: the relationship between proportion and area is only
constant within a level. The bars are scaled to be as tall as possible,
without overflowing any bounding region.

Conditioning is also an important tool by itself, because it allows
one to remove relationships that are known or uninteresting. Figure 8
uses a fluct and a vspine to explore the relationship between happi-
ness, health and financial status. The left plot displays raw propor-
tions, showing that most people are in good health and average fi-
nancial standing. However, it is difficult to see how happiness varies
within these conditions because we must compare areas, not positions.
Conditioning on financial status and health produces the plots on the
right (equal bin size plots) and makes it easier to see the conditional
distribution of happiness given sex and health, because comparing po-
sitions along a common scale is an easier perceptual task. Depending
on the comparison we are most interested in, we can make it easier to
compare across wealth given health, or health given wealth. Here we
see that for a fixed income level, better health is correlated to increased
happiness. The same is not true for a fixed level of health: rich peo-
ple with poor health seem to be less happy than poorer people in poor
health.

5 EXISTING PLOT TYPES

Many existing plots fall into this framework. The low-d primitives
already have their own names:

f (marital,age) =
f (marital|age) f (age)

(10,20] (20,30] (30,40] (40,50] (50,60] (60,70](70,80](80,90]
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Fig. 7. (Left) The joint distribution of marital status and age,
f (marital,age) as f (marital|age) · f (age), (in decades) partitioned by a
vspine and hspine. (Right) The joint distribution of age and marital
status, f (age,marital) as f (ageT |marital) · f (marital), partitioned by a
vspine and hbar.

• Bar chart (1d). 1 hbar.
• Column chart (1d). 1 vbar.
• Spineplot (1d). 1 spine.
• Fluctuation diagram (2d): 1 fluct.

And many more plots correspond to higher order combinations:

• Stacked bar chart (2d). 1 hbar and 1 vspine.
• Nested bar chart [20] (2d). 2 hbars.
• Equal bin size plot [19] (3d): 1 fluct and 1 vspine, conditioned

on the first two variables.
• Mosaic plot [21–23] (nd). Alternating hspines and vspines.
• Double-decker plot [24] (nd). n−1 hspines and 1 vspine.
• Treemap [25] (nd): n spines.
• Squarified treemap [18] (nd): n tiles.
• Generalised treemaps [26] (nd): any plot ending with a tile.

Trellis graphics [11], also known as latticed, facetted and condi-
tioned graphics, are another related display. They use categorical vari-
ables to generate multiple panels, each containing a plot of the subset
of the data. Trellised plots of area graphics also fall into our frame-
work and can be created by conditioning on the trellising variables.

6 DISPLAY CONSIDERATIONS

Labelling product plots is challenging. In this paper, we use a carefully
selected combination of colour and axis labels, as well displaying the
process by which a product plot is created. Axis labels are only avail-
able under certain conditions: when we have rows or columns that
all share the same dimensional index. This can occur because of the
structure of the graphical primitive (e.g. bars, flucts), or because the
display is of a conditional distribution. Take Figure 7 for example: the
left plot can only have the x axis labelled, but the right plot can have
both axes labelled. There are other ways to label the cells apart from
colour. [8] uses text labels, sized to occupy the space of the region
they label. In the interactive setting, dynamic labelling in the form of
tool tips is extremely helpful, as is the ability to use linked brushing to
connect high-d plots to low-d plots.

We have observed that some aspect ratios are more aesthetically
pleasing than others. This is particularly obvious for the fluctuation
diagram where, in our experience, the plots are most appealing when
the flucts are square. In other plots there does not seem to be an easy
rule of thumb, but we wonder if aspect ratios close to the golden ratio
might be more appealing. We are not aware of any previous work on
aesthetics of aspect ratio, although they do seem to affect perception
[27]. More research in this area is needed, particularly to explore the
balance of aesthetics and usability.
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Fig. 8. (Left) f (happy,health, f inrela) = f (happy|health, f inrela)× f (health, f inrela), partitioned with a vspine and fluct. Health is on the x-axis,
financial status on the y-axis. (Middle) f (happy|health, f inrela). We can no longer see the joint distribution of health and financial status, but it
is much easier to see the conditional distribution of happiness. Healthier and richer people are happier: maybe money does buy happiness?
(Right) f (happy|health, f inrela) partitioned with a fluct and hspine, emphasizing the relationship of happiness with finances, whereas the middle
plot emphasizes the relationship with health. ( Not too happy, pretty happy, very happy)

7 VARIATIONS AND EXTENSIONS

On top of this basic framework, it is useful to consider a few variations
and extensions. Instead of counts, we can plot weighted data or con-
tinuous data, or we can relax the display constraints to allow displays
where area is not proportional to weight, partitions are non-disjoint or
non-rectangular.

7.1 Weighting

We have assumed that the proportions represent counts, but without
loss of generality, we can use any set of non-negative, additive weights.
For example, in the happy dataset, the wtssall variable gives analytic
survey weights. These are used to account for oversampling of black
respondents in certain years, and to reduce the effect of non-response
in other demographics. Figure 9 shows the difference between the
weighted and unweighted distributions of age and sex. The distribu-
tion is barely different, and suggests that we don’t need to worry about
weights for this plot. (Unfortunately for this dataset of we have been
unable to find any plots where weighting does makes a difference.) In
other datasets, weights can be useful to move from numbers of coun-
ties to numbers of people, or to areas, or to other relevant quantities.
Some examples of weighted data graphics can be found in [28–30].
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Fig. 9. Joint distribution of age and sex ( male, female), f (age,sex).
(Left) counts and (right) probability weights. In this case, there is very
little difference between the plots.

7.2 Continuous data

The framework can be trivially extended to work with continuous data:
just bin continuous variables to make them discrete. There are many
different to ways to create bins for continuous data, but two are most

important [31]: bins of equal width, and bins containing equal num-
bers of points. This extension allows the product plot framework to
also describe histograms and spinograms [17], continuous analogues
of bar and spine charts, shown in Figure 10. A long standing tradi-
tion is that no gaps are displayed between adjacent rectangles when
displaying continuous data.

A more theoretical approach in dealing with continuous variables
lies in increasing the number of bins infinitesimally, which leads from
a probability mass function to a probability density function, turning
the 1d primitives bar primitives to density plots, and the 1d spine prim-
itives to a conditional density plot [32]. That approach lends itself to
the inclusion of one continuous variable, but two variables need an ad-
ditional aesthetic, such as colour, to visualize a 2d joint density. Three
or more continuous variables break the current scope of the product
plots framework.

[10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] NA [10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80](80,90]NA

Fig. 10. The distribution of happiness with age, f (age,happy). (Left)
hbar + vspine: an extension of the histogram. (Right) hspine + vspine:
an extension of the spinogram.

With one more extension, displaying the innermost proportion with
colour (instead of area), we can also describe dimensional stacking
[33].

7.3 Area not proportional to weight
It can be useful to violate the constraint that area is proportional to
value to distinguish between zeros, missing values and very small val-
ues. A zero weight should have zero area, but giving it positive area
can be useful so that it is visible. In general, it’s useful to constrain
all areas to be above a certain minimal perceptible size (e.g. 4 square
pixels). Areas which are constrained in such a way need a visual flag
(such as a different colour) to ensure that the reader knows that the



relationship between area and value has been violated. This type of
non-linear mapping has been implemented in MANET [34] and in hier-
archical pixel bar charts [12]. At the other end of the spectrum, it can
be useful to constrain the size of largest values to get censored zoom-
ing [Antony Unwin, priv. comm.], which makes it possible to focus
on small values.

Other non-linear transformations may also be useful. For example,
we could take square roots to stabilise the variance of the areas. Tukey
applied this technique to histograms to create rootograms [35; 36]:
histograms where the y-axis has a square root scale.

7.4 Non-disjoint partitions
Cascaded treemaps [37] illustrate how the violation of containment
can be productive. In the cascaded treemap, each level is slightly off-
set from the one above to create a pseudo-3d perspective. This makes
it easier to see all the levels of the hierarchy, not just the lowest level.
Figure 11 shows an example of how cascading can help illuminate the
structure of a complex mosaic plot. This technique is probably most
effective when implemented interactively.

Fig. 11. A mosaic plot of happiness by marital status and sex,
f (happy,marital,sex). (Left) Coloured by happiness ( Not too happy,

pretty happy, very happy). (Right) A cascaded view helps show how
the plot is built up.

7.5 Non-rectangular partitions
A pie chart is a popular method of displaying proportions, but it is not
a rectangular partition and so does not seem to fall in the framework
of this paper. However, there is a simple relationship between product
plots and pie charts: a pie chart is an hspine drawn in polar coordinates
with the x coordinate mapped to angle and the y coordinate to radius.
Many other circular displays turn out to be special cases of product
plots drawn in polar coordinates [38]. We have identified the following
radial plots as polar transformations of product plots:

• Wind rose (aka sector graphic) [39] and fourfold displays [40]
(2d): 1 hbar, and 1 vspine. Nightingales’s coxcomb [41] is very
similar, but the slices overlap and so violate the constraint of
disjoint area.

• Concentric pie chart (aka bullseye chart) (1d): 1 hspine.

• Doughnut plot (2d): 1 hspine, and 1 vspine.

• Racetrack plot (aka circular bar chart) (1d): 1 vbar.

• Infoslices [42] (nd): n vbars. But they only use half of the polar
plane, and are specialised for highly nested data.

Eight polar variants are displayed in Figure 12. Many of these are fa-
miliar and already have names. They are all of dubious utility because
research suggests that visualisations in polar coordinates are harder to
reader accurately than visualisations in Cartesian coordinates [43].

Generally, the y axis (mapped to radius) must be square-root trans-
formed to ensure that that counts stay proportional to areas. Fan-lenses
[44] and Stasko’s radial displays [45] deliberately do not do this in or-
der to emphasise the outer levels.

Other non-rectangular area graphics include non-rectangular
treemaps, such as circular treemaps [46], space-filling curves [47] and
voronoi treemaps [48].

Fig. 12. (Top) Area graphics in Cartesian coordinates. (Mid) Area graph-
ics in polar coordinates. (Bottom) Product graphics with alternate map-
ping of x and y to r and θ . From left to right: hbar + hbar, vspline + hbar,
hspine + hspine, hspine + vspine. ( male, female)

8 R PACKAGE

We have provided a reference implementation of these ideas
in an R [49] package called productplots, available from
http://github.com/hadley/productplots. There are
two main functions: prodcalc, which computes the coordinates of
each rectangle; and prodplot, which displays the rectangles with
the ggplot2 package [50]. The code is well tested, and ensures that the
constraints are always satisfied.

For example, the following code conveys the essence of the plots in
Figure 8. The function prodplot creates plots of the happy data,
defined using the standard R formula notation (˜), with the convention
that | denotes conditioning. The final argument lists the graphical
primitives to use for display. This can also be a template function like
mosaic() which produces a standard, named, graphic.

prodplot(happy, ˜ happy + finrela + health,
c("vspine", "fluct"))

prodplot(happy, ˜ happy | finrela + health,
c("vspine", "fluct"))

prodplot(happy, ˜ happy | finrela + health,
c("hspine", "fluct"))

As for all presentation graphics, the actual code is somewhat more
complicated, as we make a number of tweaks for optimal display. The
complete productplots code to used to create the images in this
paper is available from the authors upon request.

The productplots package has been designed to be flexible and
extensive. For example, each graphical primitive is represented by a
function: hspine(), vspine(), spine(), hbar(), vbar(),
tile() and fluct(). Adding a new graphical primitive is easy:
you just write a new function, and can use the existing calculation and
display algorithms.

9 CONCLUSION

The product plots framework is successful at describing many existing
graphics that display tables of counts, proportions and probabilities.
It lays the framework for much future work, particularly because the
framework leads to a combinatorial explosion of possibilities. For ex-
ample, a 4d PMF, f (a,b,c,d), can be factorised in five different ways:

• f (a,b,c,d) = f (a|b,c,d) f (b|c,d) f (c|d) f (d)

• f (a,b,c,d) = f (a|b,c,d) f (b|c,d) f (c,d)



• f (a,b,c,d) = f (a|b,c,d) f (b,c|d) f (d)

• f (a,b,c,d) = f (a,b|c,d) f (c|d) f (d)

• f (a,b,c,d) = f (a,b|c,d) f (c,d)

There are 24 possible ways of ordering the variables in the PMF, 5
ways of displaying a 1d PMF, and 1 way of displaying a 2d PMF, lead-
ing to a possible 24 ∗ (54 + 52 + 52 + 52 + 1) = 16,824 plots, before
we even consider conditioning! The product plots framework defines
a large space of potential plots.

Well thought out interaction will make it easier to navi-
gate this space, and we have begun to develop a prototype
model in R, as part of the cranvas suite of interactive graphics,
http://github.com/ggobi/cranvas. However, much work
and user testing remains to be done before we can be confident that we
have developed a useful navigation model.

We are also exploring the connection between product plots and
log-linear (aka Poisson) models, the statistical models most commonly
used for count data. Some special cases of the general connection
have already been worked out. For example, [23] shows how look-
ing for straight lines in a mosaic plot corresponds to a formal test of
independence between two variables. Generally, we are interested in
knowing what visual comparisons are equivalent to what formal statis-
tical tests, and conversely, how significant coefficients in a model can
help us choose a set of useful plots. Given a question, can we suggest
appropriate plots? Given a plot, can we suggest questions that it might
answer?

Product plots also need to be extended with systematic ways of dis-
playing uncertainty, to help users identify whether differences in the
plot represent real differences in the underlying population or are just
the result of random variation. This is particularly important because
area plots typically have fixed area, meaning that the total number of
observations in a plot is not directly displayed, even though this is cru-
cial for determining whether a difference is statistically significant or
not.

Finally, continuous data is currently incorporated in a simplistic
manner. Can we extend the product plots framework to include plots
designed to show continuous distributions like the average shifted his-
togram [51] or the kernel density estimate [52]?
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